Scheme of work

Cambridge IGCSE[®] Chemistry 0620 For examination from 2016

Cambridge Secondary 2

Contents

Overview
Unit 1: Experimental techniques
Unit 2: Particles, atomic structure, ionic bonding and the Periodic Table12
Unit 3: Air and water
Unit 4: Acids, bases and salts
Unit 5: Reaction rates
Unit 6: Metals and the Reactivity Series41
Unit 7: Covalent bonding
Unit 8: Organic 1
Unit 9: Amount of substance
Unit 10: Organic 2
Unit 11: Redox, electrochemistry and Group VII72
Unit 12: Equilibria81

Overview

This scheme of work provides ideas about how to construct and deliver a course. Its aim is to set out a progression through the 2016 syllabus content, which is divided into twelve teaching units but the order in which topics are covered has been adjusted to give a coherent flow to the course. Each unit covers a theme and gives ideas for activities, together with references to relevant learning resources, to use in the classroom. The progression through these themes has been designed to build on learners' own experiences, and to ensure that learners have sufficient basic knowledge and understanding to tackle the more challenging issues. There is the potential for differentiation by resource, grouping, expected level of outcome, and degree of support by teacher, throughout the scheme of work. Length of time allocated to a task is another possible area for differentiation

This scheme of work, like any other, is meant to be a guideline, offering advice, tips and ideas. It is certainly not intended that teachers undertake all of the activities shown in the various units but rather to offer choices which could depend on local conditions. It can never be complete but hopefully provides teachers with a basis to plan their lessons. It covers the minimum required for the Cambridge IGCSE course but also adds enhancement and development ideas on topics. It does not take into account that different schools take different amounts of time to cover the Cambridge IGCSE course.

Recommended prior knowledge

Learners in the UK who are beginning this course should normally have followed the Key Stage 3 programme of study within the National Curriculum for England. Other candidates beginning this course should have achieved an equivalent level of general education.

Outline

Whole class (W), group work (G), pair work (P) and individual activities (I) are indicated throughout this scheme of work. The activities in the scheme of work are only suggestions and there are many other useful activities to be found in the materials referred to in the learning resource list.

The units within this scheme of work are:

Unit 1: Experimental techniques

- 1.1 Measurement
- 1.2 Criteria for purity
- 1.3. Methods of purification

Cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and all future experimental work Teaching time: 5 hours

Unit 2: Particles, atomic structure, ionic bonding and the Periodic Table

- 2.1 The particulate nature of matter
- 2.2 Atomic structure and the Periodic Table
- 2.3 Bonding: the structure of matter
- 2.4 lons and ionic bonds
- 2.5 The Periodic Table
- 2.6 Periodic trends
- 2.7 Group I

Cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–4 Teaching time: 14 hours

Unit 3: Air and water

- 3.1 Water
- 3.2 Air
- 3.3 Noble gases

Cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and Unit 1 and Unit 2 Teaching time: 6 hours

Unit 4: Acids, bases and salts

- 4.1 The characteristic properties of acids and bases
- 4.2 Types of oxides
- 4.3 Carbonates
- 4.4 Preparation of salts
- 4.5 Identification of ions and gases

Cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and Unit 1 and Unit 2 Teaching time: 14 hours

Unit 5: Reaction rates

- 5.1 Rate of a reaction
- 5.2 Energetics of a reaction

Cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and Unit 2 Teaching time: 10 hours

Unit 6: Metals and the Reactivity Series

- 6.1 Metallic bonding
- 6.2 Properties of metals
- 6.3 Reactivity Series
- 6.4 Extraction of metals
- 6.5 Uses of metals
- 6.6 Transition metals
- 6.7 Thermal decomposition of some metal compounds

Cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and Unit 2, Unit 3 and Unit 4 Teaching time: 12 hours

Unit 7: Covalent bonding

7.1 Molecules and covalent bonds

7.2 Macromolecules

Cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and Unit 2 and Unit 6 Teaching time 4 hours

Unit 8: Organic 1

- 8.1 Naming of compounds
- 8.2 Fuels
- 8.3 Homologous Series
- 8.4 Alkanes
- 8.5 Alkenes
- 8.6 Production of energy

Cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and Unit 2 and Unit 7 Teaching time 14 hours

Unit 9: Amount of substance

- 9.1 Stoichiometry
- 9.2 The mole concept

Cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1-5 and Unit 2 Teaching time 12 hours

Unit 10: Organic 2

10.1 Alcohols 10.2 Acids 10.3 Macromolecules 10.4 Synthetic polymers 10.5 Natural macromolecules Cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and Unit 7 and Unit 8 Teaching time 12 hours

Unit 11: Redox, electrochemistry and Group VII

11.1 Redox 11.2 Electricity and chemistry 11.3 Extraction of aluminium 11.4 Group VII Cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and Unit 2 and Unit 6 Teaching time 14 hours

Unit 12: Equilibria

12.1 Reversible reactions 12.2 The Haber process 12.3 Sulfur Cross-referenced to assessment objectives AO1:1–4, AO2: 1–7, AO3: 1–5 and Unit 5 Teaching time 10 hours

Teacher support

Cambridge Teacher Support (http://teachers.cie.org.uk) is a secure online resource bank and community forum for Cambridge teachers, where you can download specimen and past question papers, mark schemes and other resources. We also offer online and face-to-face training; details of forthcoming training opportunities are posted online.

An editable version of this scheme of work is available on Cambridge Teacher Support in Microsoft Word format. If you are unable to use Microsoft Word you can download Open Office free of charge from www.openoffice.org.

Resource list

An up-to-date resource list for the Cambridge IGCSE Chemistry (syllabus 0620) can be found at: www.cie.org.uk

Textbooks and website links

This scheme of work includes website links providing direct access to internet resources. Cambridge International Examinations is not responsible for the accuracy or content of information contained in these sites. The inclusion of a link to an external website should not be understood to be an endorsement of that website or the site's owners (or their products/services).

Those most commonly used textbook and website resources referenced in this scheme of work are listed below:

Chemistry for Cambridge IGCSE, Norris, R and Stanbridge, R (Oxford University Press, 2009) ISBN: 9781408500187 *Cambridge IGCSE Chemistry Student Book,* Sunley, C and Goodman, S (Collins, 2006) ISBN: 9780007755455 *Cambridge IGCSE Chemistry: Coursebook* (4th edition) Harwood, R and Lodge, I (Cambridge University Press, 2014) ISBN: 9780521153331 *Cambridge IGCSE Chemistry: Coursebook* (3rd edition) Harwood, R and Lodge, I (Cambridge University Press, 2010) ISBN: 9780521153331 *Cambridge IGCSE Chemistry: Teacher Pack* (Collins, 2012) ISBN: 970007454471

Royal Society of Chemistry Electronic Databook www.rsc.org/education/teachers/resources/databook/

Video clips on the various methods of extraction: www.rsc.org/Education/Teachers/Resources/Alchemy/

Excellent suite of video clips on various elements of the Periodic Table: http://periodicvideos.com/ Video clips on various molecules from Nottingham University: periodicvideos.com/molecularvideos.htm

A collection of chemistry experiments and techniques: www.nuffieldfoundation.org/practical-chemistry

'Particles in motion' – Animation and video clips on particles, separating techniques and states of matter. This was originally a CD-Rom published by Royal Society of Chemistry in 2006. It is available for download from: www.nationalstemcentre.org.uk/elibrary/resource/3988/particles-in-motion

Variety of resources for IGCSE Chemistry www.chalkbored.com/lessons/chemistry-11.htm

An excellent source of background notes for teaching IGCSE Chemistry. www.chemguide.co.uk/

An excellent site for revision, interactive videos, background notes and self-marked tests: www.bbc.co.uk/schools/gcsebitesize/science/

Another source of videos worth searching is www.youtube.com.

Useful revision sites: www.docbrown.info/ www.gcsescience.com/gcse-chemistry-revision.htm

Past and Specimen Paper questions (Core and Extension)

Cambridge IGCSE Chemistry past and specimen paper questions are attached to each unit of this scheme of work and are referred to in the learning resources column.

Unit 1: Experimental techniques

Recommended prior knowledge

Learners should have a basic knowledge on particle theory.

Context

The concepts and practical skills introduced in this unit will be revisited in future topics.

Outline

This unit contains a considerable amount of practical work and introduces a variety of practical techniques that will be built on in future units. The unit starts by focusing on the variety of purification techniques available to chemists. This unit is cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5.

(Note: (S) denotes material in the Supplement only.)

Teaching time

Based on a total time allocation of 130 contact hours for this Cambridge IGCSE course, it is recommended that this unit should take about 5 hours.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
2.1	Name appropriate apparatus for the measurement of time, temperature, mass and volume, including burettes, pipettes and measuring cylinders	A circus of experiments may be used to introduce this by measuring the temperature, mass, and volumes of different coloured liquids (water/food dye). (I) This will be reinforced when all experimental work is conducted.	There are some good videos on YouTube. For example: Using a measuring cylinder: www.youtube.com/watch?v=Q_X8yKlzbkg Using a burette: www.youtube.com/watch?v=mZZqR5KlmTw Using a pipette: www.youtube.com/watch?v=DKRQ95QfWN Y
2.2.1	Demonstrate knowledge and understanding of paper chromatography Interpret simple chromatograms	Experimental work can involve simple inks, sweets, leaves, dyes and food colourings. Non-permanent felt-tip pens work well. (P)	Chromatography of sweets: www.practicalchemistry.org/experiments/chr omatography-of-sweets%2C194%2CEX.html and www.rsc.org/learn- chemistry/resource/res00000455/smarties- chromatography Chromatography of leaves: www.practicalchemistry.org/experiments/chr omatography-of-leaves,199,EX.html Another paper chromatography experiment: www.scienceprojectlab.com/paper- chromatography-experiment.html
2.2.1(S)	Interpret simple chromatograms, including the use of <i>R</i> _f values	With more able learners use $R_{\rm f}$ values to compare the height of the spots on the chromatograms obtained above. (I)	Clear explanations can be found at: www.chemguide.co.uk/analysis/chromatogra phy/paper.html and www.bbc.co.uk/schools/gcsebitesize/science /triple_ocr_21c/further_chemistry/chromatogr aphy/revision/4/

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
2.2.1(S)	Outline how chromatography techniques can be applied to colourless substances by exposing chromatograms to substances called locating agents	Experimental work can be extended to include separating a mixture of amino acids (using ninhydrin as a locating agent) and simple sugars. This may be best done as a teacher demonstration. (W)	Chromatography of amino acids: www.biotopics.co.uk/as/amino_acid_chromat ography.html
	(Knowledge of <i>specific</i> locating agents is <i>not</i> required.)		
2.2.1	Identify substances and assess their purity from melting point and boiling point information	This can be demonstrated by dissolving sodium chloride or other salts in water or by comparing the melting point of the alloy, solder, with those of lead and tin. (W) The use of salt on roads to melt ice could be mentioned in this context.	Practical procedure for comparing melting points of lead, tin and solder: www.nuffieldfoundation.org/practical- chemistry/solid-mixtures-tin-and-lead-solder
2.2.1	Understand the importance of purity in substances in everyday life, e.g. foodstuffs and drugs	Chemists need pure substances to study their properties. Pure substances are used in industry to make useful products such as food and drugs. This could be set as a brief research activity. (I) or (P)	This web page contains some information: www.bbc.co.uk/schools/gcsebitesize/science /add_ocr_gateway/chemical_economics/batc hcontinuousrev4.shtml
2.2.2	Describe and explain methods of purification by the use of a suitable solvent, filtration, crystallisation and distillation (including use of fractionating column) (Refer to the fractional distillation of petroleum in section 14.2 and products of fermentation in section 14.6.)	 Typical solvents to use are water (salt/sand) or ethanol (salt/sugar). (P) Filtration is used in one of the salt preparation methods above to remove the excess solid. Crystallisation is used in most salt preparations to obtain the final product. Experimental work can involve: purification of an impure solid (P) demonstration of the extraction of iodine from seaweed (W) distillation of coca-cola or coloured water (W) or (P) 	Separating salt and sand: www.nuffieldfoundation.org/practical- chemistry/separating-sand-and-salt Extracting iodine from seaweed: www.nuffieldfoundation.org/practical- chemistry/extracting-iodine-seaweed Fractional distillation of (artificial) crude oil: www.nuffieldfoundation.org/practical- chemistry/fractional-distillation-crude-oil Various methods of purification 1.6.1–1.6.3

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		 demonstration of the (partial) separation of ethanol from water by distillation (W) demonstration of the separation of 'petroleum fractions' from mixtures of hydrocarbons using 'artificial' crude oil. (W) Extension – the separation of oxygen and nitrogen from liquid air by fractional distillation. 	and 1.7.1–1.7.3: <i>Chemistry for Cambridge IGCSE</i> , Norris and Stanbridge, p12–15 An excellent collection of animations and video clips can be found at: www.nationalstemcentre.org.uk/elibrary/reso urce/3988/particles-in-motion This was originally published by Royal Society of Chemistry on a CD ROM, 'Particles in Motion', 2006
2.2.2	Suggest suitable purification techniques, given information about the substances involved	This may be linked to magnetic properties (less important) and varying solubilities (more important).	
	Formative assessment	Learner progress could be assessed using questions from 0620 past examination papers and specimen papers available at: http://teachers.cie.org.uk	Unit 1: Past and Specimen Paper questions

Unit 2: Particles, atomic structure, ionic bonding and the Periodic Table

Recommended prior knowledge

Learners should have a basic knowledge of particle theory and the layout of the Periodic Table.

Context

This unit can be taught as a whole or split into two parts: (i) particles, states of matter and atomic structure and (II) ionic bonding, Periodic Table and Group I.

Outline

This unit begins by looking at the particle model of matter and leads onto the structure of the atom. These are fundamental topics, which will be revisited in later units (and in Cambridge IGCSE Physics 0625). This is then extended to include ions, leading onto ionic bonding (to link up with Group I). The layout of the Periodic Table can be introduced (opportunity for learners, in groups, to research trends within groups or across periods) and the chemistry and properties of the Group I metals. This unit is cross-referenced to assessment objectives AO1:1–4; AO2: 1–7; AO3:1–5.

(Note: (S) denotes material in the Supplement only.)

Teaching time

Based on a total time allocation of 130 contact hours for this Cambridge IGCSE course, it is recommended that this unit should take about 14 hours.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
1	State the distinguishing properties of solids, liquids and gases	This could be a quick question and answer session at the beginning of a lesson with examples of solids, liquids and gases to emphasise their properties. The use of the suggested learning resource would reinforce this. (W) The animation could also be used individually. (I)	There is a very good, interactive animation linking properties of solids, liquids and gases to the particle model: www.bbc.co.uk/bitesize/ks3/science/chemica I_material_behaviour/particle_model/activity/
1	Describe the structure of solids, liquids and gases in terms of particle separation, arrangement and types of motion	Use 'particles in boxes' diagrams to represent the three states of matter. This could be a research activity using textbooks or the internet. (G)	An excellent collection of animations and video clips can be found at: www.nationalstemcentre.org.uk/elibrary/reso urce/3988/particles-in-motion This was originally published by Royal Society of Chemistry on a CD ROM, 'Particles in Motion', 2006 <i>Cambridge IGCSE Chemistry Student Book</i> Harwood and Lodge p10–11 Cambridge IGCSE Chemistry Teacher Pack (Collins) p21
1	Describe changes of state in terms of melting, boiling, evaporation, freezing, condensation and sublimation	The heating of solid octadecanoic acid (stearic acid) until it is liquid, and then allowing it to freeze again, measuring the temperature at regular intervals and plotting the results is a good class practical. (P) Another possibility is investigating the rate of evaporation of propanone, either as a class practical (P) or as a demonstration. (W) Sublimation can be demonstrated by heating ammonium chloride in an evaporating dish and collecting the solid on the sides of an inverted filter funnel above the dish. (W)	Melting and freezing of stearic acid: www.nuffieldfoundation.org/practical- chemistry/melting-and-freezing-stearic-acid Rate of evaporation of propanone: www.nuffieldfoundation.org/practical- chemistry/rate-evaporation Sublimation of ammonium chloride: www.tes.co.uk/teaching- resource/Sublimation-of-Ammonium- Chloride-Experiment-6132591/
1 (S)	Explain changes of state in terms of the kinetic theory	Relate the conversions to the motion and arrangement of particles. This may be done as a research activity using textbooks or the internet. (I), (P) or (W) Emphasise the change in the arrangement and movement of the	The endorsed textbooks and most good textbooks have sections on this. Also the excellent collection of animations and video clips at:

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		 particles when a substance changes state. Relate the conversions to the motion and arrangement of particles. Relate this to the energy input/output. Learners can be asked to use the theory to explain properties such as behaviour of gases under pressure and liquid flow (opportunity for a 'circus of experiments' here). (I), (P) of (W) 	www.nationalstemcentre.org.uk/elibrary/reso urce/3988/particles-in-motion
1	Describe qualitatively the pressure and temperature of a gas in terms of the motion of its particles	 This could be a research activity. (G) or (I) Pressure is due to particles in a gas hitting the walls of a container. The faster the speed of the particles the higher the pressure. The higher the temperature of a gas the faster the particles are moving. 	There is a good animation at: www.bbc.co.uk/bitesize/ks3/science/chemica l_material_behaviour/behaviour_of_matter/a ctivity/ There is clear information on pressure in gases at: www.bbc.co.uk/bitesize/ks3/science/chemica l_material_behaviour/behaviour_of_matter/re vision/3/
1	Show an understanding of the random motion of particles in a suspension (sometimes known as Brownian motion) as evidence for the kinetic particle (atoms, molecules or ions) model of matter	One effective way to view Brownian motion is to view a slide of colloidal graphite through a microscope. (W) There are a number of good videos on the internet which show examples of Brownian motion.	Carbon particles in water: www.nuffieldfoundation.org/practical- physics/brownian-motion-carbon-particles- water Videos of Brownian motion can be found on YouTube. One example of smoke particles being bombarded by air particles is: www.youtube.com/watch?v=4tt7M2fpI6U Marble simulation is shown as part of a larger set of experiments in this link: www.nuffieldfoundation.org/practical- physics/modelling-brownian-motion

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
1(S)	Describe and explain Brownian motion in terms of random molecular bombardment	A good simulation explaining Brownian motion can be achieved by gently shaking a tray of small marbles with two or three larger marbles.	See above.
	State evidence for Brownian motion		
1	Describe and explain diffusion	 Simple examples of diffusion include: air freshener, perfume, ether, camphor smells in the lab movement of nitrogen dioxide gas or bromine vapour in air coloured inks/CuSO₄/KMnO₄ in water and Pb(NO₃)₂ in KI. Extension – what would influence diffusion rate, for example temperature using tea bags held by a glass rod in beakers of hot and cold water. Learners should be able to link their observations to the particle model. 	Details of how to perform a diffusion in liquids experiment: www.nuffieldfoundation.org/practical- chemistry/diffusion-liquids
1(S)	Describe and explain dependence of rate of diffusion on molecular mass	Demonstration: Two cotton wool pads, one soaked with conc. hydrochloric acid and the other with conc. ammonia can be placed at opposite ends of a long glass tube sealed with bungs. A white 'smoke' of the precipitated ammonium chloride is seen where the two gases meet. (W)	Diffusion of ammonia and hydrogen chloride: www.nuffieldfoundation.org/practical- chemistry/diffusion-gases-ammonia-and- hydrogen-chloride
3.1	State the relative charges and approximate relative masses of protons, neutrons and electrons	Opportunity for group work, learners can research and present their ideas on the development of the structure of the atom from the Greeks onwards. They can also discuss the limitations of each model using ICT/textbooks. (G)	Summary of atomic structure is to be found in all good textbooks. A summary can also be found at: www.gcsescience.com/a1-atom-electron- neutron-proton.htm Good lesson approach to the history of the atomic structure at: www.learnnc.org/lp/pages/2892
3.1	Define proton number (atomic	Once learners are aware of the definitions and the relative	Most good textbooks have questions about

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	number) as the number of protons in the nucleus of an atom Define <i>nucleon number</i> (mass number) as the total number of protons and neutrons in the nucleus of an atom	charges and masses of the sub-atomic particles they can use the information to solve problems, such as the number of protons, neutrons and electrons in the atom of a particular element given the proton number and nucleon number. Introducing the symbols of elements showing nucleon number and proton number is best done here. (I) or (P)	this and there are also examples in the Unit 2: Past and Specimen Paper questions attached to this scheme of work. There is a good animation at: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/atomic_structure/chemcalcact.sht ml There is also an interactive quiz at: www.bbc.co.uk/bitesize/quiz/q76774007
3.1	Use proton number and the simple structure of atoms to explain the basis of the Periodic Table (see section 9), with special reference to the elements of proton number 1 to 20	This could be set as a brief research exercise. (G)	The first page of this link explains this: www.bbc.co.uk/schools/gcsebitesize/science /add_gateway_pre_2011/periodictable/atoms rev1.shtml
3.1	Define <i>isotopes</i> as atoms of the same element which have the same proton number but a different nucleon number	A good way to illustrate isotopes is by comparing ice cubes in water – D_2O (sinks) and H_2O (floats).	The atomic structure of isotopes of hydrogen: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa_pre_2011/radiation/atomsisotopes rev2.shtml A good, short video of ice and D ₂ O in water: www.youtube.com/watch?v=VLiirA5ooS0
3.1(S)	Understand that isotopes have the same properties because they have the same number of electrons in their outer shell	Although this may be covered here, it should also be reinforced after 'electronic structures of atoms' has been covered.	This is covered well in most good textbooks.
3.1	State the two types of isotopes as being radioactive and non-radioactive	If an isotope is radioactive the nucleus is unstable and it will break down over a period of time.	

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
3.1	State one medical and one industrial use of radioactive isotopes	Possible examples include the location of blockages and leakages in underground pipes and the use of radioactive iodine in tracing thyroid activity.	Modern uses of radioactive isotopes: www.chem.duke.edu/~jds/cruise_chem/nucl ear/uses.html
6.2	Describe radioactive isotopes, such as ²³⁵ U, as a source of energy	 Possible issues for discussion include: the long term nature of nuclear energy (sustainable long after coal and oil run out) environmental considerations such as the disposal of radioactive waste. (G) or (W) 	This is a good source of information: www.world-nuclear.org/education/uran.htm
3.1	Describe the build-up of electrons in 'shells' and understand the significance of the noble gas electronic structures and of the outer shell electrons (The ideas of the distribution of electrons in s and p orbitals and in d block elements are not required.) Note: a copy of the Periodic Table will be available in Papers 1, 2, 3 and 4.	Use circles to show the shells up to atomic number 20. Learners can use mini-whiteboards to draw electron diagrams as a class activity. (W), (P) or (I) Extension – to use spectroscopes to illustrate different energy shells.	A good video that has some interactivity is found at: www.bbc.co.uk/schools/gcsebitesize/science /aqa/fundamentals/atomsact.shtml
3.1(S)	Understand that isotopes have the same properties because they have the same number of electrons in their outer shell	This could be stated here and related to the Periodic Table in 9.2(S) , covered later in this unit.	
3.2.1	Describe the differences between elements, mixtures and compounds, and between metals and non-metals	The reaction between iron sulfur to produce iron(II) sulfide can be carried out by learners to illustrate the varying properties of the elements, the mixture and the compound. (P) or (W) (Link to Unit 5.)	A good guide to carrying out the experiment suggested: www.nuffieldfoundation.org/practical- chemistry/iron-and-sulfur-reaction An excellent video animation of Fe, S and

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
			FeS is to be found at: www.bbc.co.uk/schools/ks3bitesize/science/ chemical_material_behaviour/compounds_m ixtures/activity.shtml This video also has a very good section linking back to Unit 1 of this scheme, i.e. chromatography and distillation.
7.1	Identify physical and chemical changes, and understand the differences between them	This is a good place to introduce this as learners have already encountered physical changes in changes of state and a chemical change in the formation of iron(II) sulfide.	Information at: www.bbc.co.uk/bitesize/ks3/science/chemica I_material_behaviour/compounds_mixtures/r evision/1/
			and http://chemwiki.ucdavis.edu/Analytical_Che mistry/Qualitative_Analysis/Chemical_Chang e_vsPhysical_Change
			A sheet that could be used as homework: www.tes.co.uk/ResourceDetail.aspx?storyCo de=6212211 (Download the 'full worksheet' document.)
3.2.1	Describe an alloy, such as brass, as a mixture of a metal with other elements	Awareness of the importance of alloys to meet industrial specifications for metals. Link to Section 2.2.1 Unit 1 and Section 10.3 Unit 6.	www.practicalchemistry.org/experiments/inte rmediate/metals/making-an-alloy- solder,131,EX.html
10.1	Identify representations of alloys from diagrams of structure	Construct models of an alloy using molding clay (plasticine).	The suggested experiment is found at: www.nuffieldfoundation.org/practical- chemistry/modelling-alloys-plasticine
3.2.2	Describe the formation of ions by electron loss or gain	Emphasise formation of a full shell/noble gas configuration. Learners should be shown dot-and-cross diagrams for simple ionic substances, e.g. NaC <i>l</i> , KF, MgO; then challenged to draw diagrams for more complicated examples like CaC <i>l</i> ₂ , MgBr ₂ , A <i>l</i> F ₃ .	There is a good section called 'A simple view of ionic bonding': www.chemguide.co.uk/atoms/bonding/ionic. html www.bbc.co.uk/schools/gcsebitesize/science

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		Learners can use mini-whiteboards to draw electron diagrams as a class activity. This can also be done using cut out electrons and shells so learners can move electrons into place. Link this to Unit 11.	/add_aqa/bonding/ionic_bondingrev1.shtml Although the commentary of this animation is a little colloquial, it is certainly worth considering: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/bonding/ionic_bondingrev1.shtml
3.2.2	Describe the formation of ionic bonds between elements from Groups I and VII	Concentrate on the attraction of + and – charges and the full outer shells obtained by electron transfer. Use above examples.	Consider the above resources and remember that this is usually covered well in the endorsed and other good textbooks.
3.2.2(S)	Describe the formation of ionic bonds between metallic and non-metallic elements	Learners can explore the properties of ionic compounds experimentally and link them to the model of ionic bonding – solubility in water, conductivity when solid, in solution and molten (do as a demonstration with PbBr ₂ (or preferably ZnC <i>l</i> ₂) and melting point. (P) and (W) Extension – learners could be introduced to writing ionic formulae (Unit 9) and electrolysis (Unit 11). (I)	A safer alternative to electrolysing lead bromide is to use zinc chloride: www.nuffieldfoundation.org/practical- chemistry/electrolysis-zinc-chloride
3.2.2(S)	Describe the lattice structure of ionic compounds as a regular arrangement of alternating positive and negative ions	Ball and spoke models will be useful here.	Good websites to illustrate this: www.chm.bris.ac.uk/pt/harvey/gcse/ionic.htm I www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/bonding/structure_propertiesrev4.s html
6.1	Describe the meaning of <i>exothermic</i> and <i>endothermic</i> reactions	 This can be seen as a rise or fall in temperature in many chemical reactions used in the syllabus. This concept can be taught across the syllabus rather than as a discrete lesson. Suggested experiments: neutralisation reactions of acids and alkalis (see Unit 4) 	

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		 metal displacement reactions (see Unit 6) dissolving salts, including ammonium salts (see Unit 4) if data loggers are available, temperature probes could be used. (W) and (P) Link to Section 6.1 in Unit 5 	
9.1	Describe the Periodic Table as a method of classifying elements and its use to predict properties of elements	Elements to be classified as metals and non-metals. Their states should be mentioned. Properties limited to qualitative idea of melting/boiling point. Three suggested activities: Learners make observations from a photocopied version of the Periodic table. A database of properties and states for elements of periods 1, 2 and 3 could be set up. Learners, in groups, could be asked to design a flowchart to find the metals, non-metals, solids and liquids and enter the results on a blank copy of the periodic table. (G)	Good suite of video clips on various elements of the Periodic Table: www.periodicvideos.com/ Interactive Periodic Tables: www.webelements.com/ www.rsc.org/chemsoc/visualelements/index. htm www.ptable.com/ www.chemicool.com/
9.2	Describe the change from metallic to non-metallic character across a period	Emphasise the metal/non-metal boundary.	
9.2(S)	Describe and explain the relationship between Group number, number of outer shell electrons and metallic/non-metallic character	Emphasise number of outer shell electrons = group number.	
4.1	Use the symbols of the elements and write the formulae of simple compounds	Learners can calculate the formula by using the 'combining powers' or 'valencies' of the elements. Learners can use mini-whiteboards to write formulae or bingo activity for working out the total number of atoms in a formula.	<i>Cambridge IGCSE Chemistry Student Book,</i> Sunley and Goodman, p68–69 <i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p44–45

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
4.1	Deduce the formula of a simple compound from the relative numbers of atoms present	As above. This should be linked with organic molecules and with inorganic substances such as P_4O_{10} .	
9.3	Describe lithium, sodium and potassium in Group I as a collection of relatively soft metals showing a trend in melting point, density and reaction with water	 Group I metals are called the alkali metals. Demonstration with very small amounts of the metals behind a safety screen <i>or video</i> only of reactions with water due to highly exothermic nature. (W) Focus on the observations here and link to theory and relative reactivity: metal floats, so less dense than water fizzing indicates that a gas is given off molten ball (not Li) indicates highly exothermic reaction because the hydrogen gas given off ignites. 	A very good experimental procedure for demonstrating the properties of the alkali metals: www.practicalchemistry.org/experiments/alk ali-metals,155,EX.html Excellent video of the reaction of all the alkali metals with water: www.open2.net/sciencetechnologynature/wo rldaroundus/akalimetals.html
9.3	Predict the properties of other elements in Group I, given data, where appropriate	Include reactions of Rb and Cs and physical properties such as melting and boiling points. Trends can be obtained from suitable databases. Sometimes you refer to elements by their symbols. You could tell learners that if you had a sample of caesium, enclosed in a sealed glass tube, it would quickly melt from the warmth of your hand.	The video above shows this really well. Useful background data on Rb, Cs and Fr: www.chemtopics.com/elements/alkali/alkali.h tm
	Formative assessment	Learner progress could be assessed using questions from 0620 past examination papers and specimen papers available at: http://teachers.cie.org.uk	Unit 2: Past and Specimen Paper questions

Unit 3: Air and water

Recommended prior knowledge

Knowledge of atomic structure and the basic layout of the Periodic Table is preferable.

Context

This unit builds on ideas from Unit 1 and Unit 2. The concepts in this unit will be revisited in Unit 6 and Unit 11.

Outline

This unit begins by looking at the ways in which we can test for water and its treatment. Learners could compare methods of treatment in their country and the UK. Discussion of why some governments recommend boiling tap water or to drink bottled water together with the environmental consequences. The composition of the air and its common pollutants. Learners can research how air quality is monitored and managed in their own country. This unit is cross-referenced to assessment objectives AO1:1–4; AO2: 1–7; AO3:1–5 and Unit 2.

(Note: (S) denotes material in the Supplement only.)

Teaching time

Based on a total time allocation of 130 contact hours for this Cambridge IGCSE course, it is recommended that this unit should take about 6 hours.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
11.1	Describe chemical tests for water using cobalt(II) chloride and copper(II) sulfate	Use anhydrous cobalt(II) chloride (blue cobalt chloride paper) and anhydrous copper(II) sulfate (solid). (P) or (I) Learners could be introduced to 'reversible reactions' (link to Unit 12). (P) Extension – practical/demonstration of burning a fuel (candle) and illustrating that water is one of the combustion products (link to Unit 8). See 11.4 later in this unit. (W) or (P)	Preparing cobalt chloride paper: www.nuffieldfoundation.org/practical- chemistry/preparing-and-using-cobalt- chloride-indicator-papers A reversible reaction involving copper sulfate: www.nuffieldfoundation.org/practical- chemistry/reversible-reaction-involving- hydrated-copperii-sulfate-and%C2%A0its- anhydrous-form
11.1	Describe, in outline, the treatment of the water supply in terms of filtration and chlorination	Emphasis on filtration (link to Unit 1) and chlorination stages. Opportunity to introduce the properties of chlorine/Group VII elements as poisonous, safe only in very dilute solution. Can discuss role of chlorine in eradicating waterborne diseases in many countries. Possible school visit to a water treatment plant. (W)	Notes on water purification: www.docbrown.info/page01/AqueousChem/ AqueousChem.htm and pages 1–2 of: www.bbc.co.uk/schools/gcsebitesize/science /add_gateway_pre_2011/chemical/waterrev1 .shtml <i>Cambridge IGCSE Chemistry: Coursebook</i> (3 rd edition), Harwood and Lodge, p13–16
11.1	Name some of the uses of water in industry and in the home	Water is used as a solvent and a coolant in industry, as well as used for drinking and washing in the home. Possible activities include writing a 24 hour 'water use' diary and presenting data as bar or pie charts, perhaps using a spread sheet. (I)	
11.1(S)	Discuss the implications of an inadequate supply of water, limited to safe water for drinking and water for irrigating crops	Discussion in groups and presentation of outcomes. (G)	Good information at: www.bbc.co.uk/schools/gcsebitesize/science /add_gateway_pre_2011/chemical/waterrev1 .shtml
11.2	State the composition of	Demonstration experiment to derive the % oxygen in the air using	There are several examples of this

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	clean, dry air as being approximately 78% nitrogen, 21% oxygen and the remainder as being a mixture of noble gases and carbon dioxide	the oxidation of heated copper metal. (W) An alternative is iron wool with air. (P)	experiment, e.g. www.mikecurtis.org.uk/air.htm There is also a video of this experiment: www.youtube.com/watch?v=hiawJDsy8Z4 Video clip on gases from the air. This link takes you to an index. To locate the video click on 'Gases from Air': www.rsc.org/Education/Teachers/Resources /Alchemy/index2.htm Chemistry for Cambridge IGCSE, Norris and Stanbridge, p182 Class practical using iron wool: www.nuffieldfoundation.org/practical- chemistry/how-much-air-used-during-rusting
11.2(S)	Describe the separation of oxygen and nitrogen from liquid air by fractional distillation	Link to Unit 1. Link this to boiling points and the fractional distillation of petroleum and ethanol (Unit 8 and 10).	The video clip mentioned in the previous row contains a good sequence on this. Good summary of the process: www.bbc.co.uk/schools/gcsebitesize/science /edexcel_pre_2011/oneearth/usefulproductsr ev2.shtml
9.5	Describe the noble gases, in Group VIII or 0, as being unreactive, monoatomic gases and explain this in terms of electronic structure	Opportunity to reinforce ideas of full outer shells leading to lack of reactivity (link to Unit 2).	Good video clip about the noble gases: www.open2.net/sciencetechnologynature/wo rldaroundus/noblegases.html
9.5	State the uses of the noble gases in providing an inert atmosphere, i.e. argon in lamps, helium for filling balloons	Learners can produce posters, or in groups do a short- presentation/poster illustrating the uses of the different noble gases. (I), (P) or (G)	Information on uses: www.drbateman.net/gcse2003/gcsesums/ch emsums/noblegases/noblegases.htm

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
6.2	Describe the release of heat energy by burning fuels	 Emphasise that combustion is an exothermic process. Relevant examples should include Bunsen burner, fuels for heating the home and fossil fuel burning power stations. Learners can research/do an investigation into what makes a good fuel. (G) or (I) Opportunities for experiments to compare energy evolved on heating fuels using spirit burner and metal can. Awareness of the importance of energy output of hydrocarbon fossil fuels to transport and manufacturing industry. 	There is information at: www.bbc.co.uk/schools/gcsebitesize/science /ocr_gateway/carbon_chemistry/carbon_fuel srev1.shtml Information about these experiments and be found in: <i>Chemistry for Cambridge IGCSE</i> , Norris and Stanbridge www.nuffieldfoundation.org/practical- chemistry/heat-energy-alcohols
11.4	 State the formation of carbon dioxide: as a product of complete combustion of carbon-containing substances as a product of respiration as a product of the reaction between an acid and a carbonate from the thermal decomposition of a carbonate. 	 Opportunity for demonstration or learners to perform a variety of experiments to prepare carbon dioxide. (W) or (P) The products of combustion can also be identified in a demonstration. This gives the opportunity to revisit the test for water. (W) Learners can be introduced to the limestone cycle (link to Unit 4) and this can be extended to make temporary hard water (calcium hydrogencarbonate solution). Comparison of oxygen and carbon dioxide content in air before and after respiration and combustion. Possible issues to raise include the role of carbon dioxide from combustion of fossil fuels contributing to global warming. (Note that the present concentration of CO₂ in the atmosphere is 0.04%.) 	Identifying the products of combustion of a solid hydrocarbon: www.nuffieldfoundation.org/practical- chemistry/identifying-products-combustion Experiemtnal set up to test for carbon dioxide in breath: www.biotopics.co.uk/humans/inhaledexhaled .html Preparation of carbon dioxide from calcium carbonate and hydrochloric acid: <i>Collins Cambridge IGCSE Chemistry</i> <i>Student Book</i> p275 Thermal decomposition of a carbonate. This is a good experimental procedure and we suggest you only decompose one or two of the suggested carbonates, omitting sodium carbonate and potassium carbonate: www.nuffieldfoundation.org/practical- chemistry/thermal-decomposition-metal- carbonates
11.4(S)	Describe the carbon cycle,	This could be a research activity which culminates in the	Information:

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	in simple terms, to include the processes of combustion, respiration and photosynthesis	production of posters or class presentations. (G)	www.gcsescience.com/w2-carbon-cycle.htm www.bbc.co.uk/schools/gcsebitesize/science /edexcel/problems_in_environment/recycling rev2.shtml
11.4	State that carbon dioxide and methane are greenhouse gases and may contribute to climate change State the sources of methane, including decomposition of vegetation and waste gases from digestion in animals	Emphasise that a greenhouse gas absorbs heat energy and stops heat escaping into space and warms the atmosphere, which causes an increase in global warming. Methane is formed as a result of digestion in cows and from rice paddy fields.	A good section on climate change and carbon dioxide in this video: www.bbc.co.uk/bitesize/ks3/science/environ ment_earth_universe/changes_in_environm ent/activity/ A good written section at: www.bbc.co.uk/schools/gcsebitesize/science /ocr_gateway/energy_resources/global_war mingrev1.shtml Simulation experiment: www.nuffieldfoundation.org/practical- chemistry/greenhouse-effect
11.2	Name the common pollutants in the air as being carbon monoxide, sulfur dioxide, oxides of nitrogen and lead compounds	Emphasise that CO is a poisonous gas and both sulfur dioxide and oxides of nitrogen can lead to breathing difficulties and the formation of acid rain. Extension – learners can produce a flowchart to show how acid rain is formed. Opportunity for group work – data analysis of tables of air quality data.	Overview on air pollution and update readings for nitrogen oxides in London: www.londonair.org.uk/london/asp/informatio n.asp Information on common air pollutants: www.bbc.co.uk/schools/gcsebitesize/science /ocr_gateway_pre_2011/rocks_metals/6_cle an_air3.shtml Fact sheet on SO ₂ pollution in Australia: www.environment.gov.au/resource/sulfur- dioxide-so2
11.2	State the source of each of these pollutants: • carbon monoxide from	 Emphasise the source of gas: CO from incomplete combustion of a carbon-based fuel SO₂ from the combustion of fossil fuels containing sulfur 	The Earth's atmosphere: www.bbc.co.uk/schools/gcsebitesize/science /ocr_gateway_pre_2011/rocks_metals/6_cle

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	 the incomplete combustion of carbon- containing substances sulfur dioxide from the combustion of fossil fuels which contain sulfur compounds (leading to 'acid rain') oxides of nitrogen from car engines lead compounds from leaded petrol. 	 nitrogen oxides from the reaction of nitrogen and oxygen inside a car engine at high temperature or by their reaction during a lightning strike. Possible issues for discussion or research include: reliance on fossil fuels (petrol, power stations) as a major contributory factor to air pollution why lead compounds in petrol are banned in many countries. (G) 	an_air3.shtml A good article appears in this World Health Organisation Bulletin of 2002: www.who.int/bulletin/archives/80(10)768.pdf
11.2(S)	Describe and explain the presence of oxides of nitrogen in car exhausts and their catalytic removal	 This could be a research activity with presentation of findings/posters. (G) Emphasise the purpose of a catalytic converter to change the poisonous gases, carbon monoxide and oxides of nitrogen, into non-toxic nitrogen and carbon dioxide. Links to other units include the opportunity for treatment of converter reactions in terms of redox (section 7.4, Unit 11). Reinforcement of catalytic chemistry (section 7.2, Unit 5) and transition metal use (section 9.4, Unit 6). 	Atmospheric pollution: www.bbc.co.uk/schools/gcsebitesize/science /ocr_gateway_pre_2011/rocks_metals/6_cle an_air3.shtml
11.2	State the adverse effect of these common pollutants on buildings and on health and discuss why these pollutants are of global concern	 Emphasis on limestone decay, rusting of iron and tarnishing of copper. This provides an opportunity for learners to carry out group research, perhaps presenting their findings to the rest of the class using overhead projection foils or posters. (G) Each group can research the effects of a different pollutant gas in terms of how it is produced, its adverse effects and methods for solving the problem. Issues include: effects of acid rain on vegetation, aquatic life, limestone buildings 	

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		 oxides of nitrogen and sulfur dioxide as respiratory irritants dangers of CO poisoning from cars and poorly maintained domestic heaters reasons for high concentration of pollutants in cities and subsequent effects on health. The role of chemistry in a 'search for solutions' can also be discussed, for example: attempts to control the effects of sulfur emissions (scrubbers) liming of lakes and soil to neutralise some of the effects of acid rain development of alternative fuels, catalysts to lower energy use in industry and catalytic converters for cars. 	
11.2	State the conditions required for the rusting of iron	Class experiments can be set up and linked to the rust prevention investigations below. (P)	Experiments to investigate the causes of rusting: www.nuffieldfoundation.org/practical- chemistry/causes-rusting <i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p 192 Fig. 15.7.1
11.2	Describe and explain methods of rust prevention, specifically paint and other coatings to exclude oxygen	 Experiment involving the investigation of rusting of iron nails using these methods. A simple investigation or experiment to demonstrate methods of prevention can be: apply coating to a nail – colourless nail varnish, correction fluid (Tippex), cling film, grease or oil, oil-based paint sacrificial protection – wrap a small piece of Mg ribbon around a nail. (P) or (W) 	Rust prevention class practical investigation or demonstration: www.practicalchemistry.org/experiments/pre venting-rusting%2C251%2CEX.html
11.2(S)	Describe and explain sacrificial protection in terms of the reactivity series of metals and galvanising as a method of rust prevention	Opportunity to introduce reactivity series (Section 10.2) and link this with 10.4(S) . Both are found in Unit 6. This could be emphasised in the above experiment, where two or three metals of different reactivity could be investigated – Mg, Sn, Cu.	Extension-mechanism of sacrificial protection: www.dynamicscience.com.au/tester/solution s/chemistry/corrosion/rustpreventionsacanod e.htm

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	Formative assessment	Learner progress could be assessed using questions from 0620 past examination papers and specimen papers available at: http://teachers.cie.org.uk	Unit 3: Past and Specimen Paper questions

Unit 4: Acids, bases and salts

Recommended prior knowledge

Learners should be familiar with the laboratory techniques introduced in Unit 1 and have some knowledge about particle theory, atomic structure and ionic bonding (Unit 2).

Context

This unit builds on ideas from earlier units. The concepts of this unit will be revisited in Unit 6, Unit 8 and Unit 9.

Outline

This unit starts with an introduction to writing and balancing equations (this might have been introduced in earlier units – depending on the ability of the learners). Equations can then be written for the reactions of acids and bases. There is a considerable range of practical work that can be carried out. Opportunity for learners to research the common products used in the home that are acidic/alkaline in nature and apply this knowledge to some everyday examples of neutralisation reactions, e.g. indigestion tablets, insect bites or stings. In addition, learners can make and test their predictions in respect to salt preparation. This unit is cross-referenced to assessment objectives AO1:1–4; AO2:1–7; AO3:1–5 and Unit 1 and Unit 2.

(Note: (S) denotes material in the Supplement only.)

Teaching time

Based on a total time allocation of 130 contact hours for this Cambridge IGCSE course, it is recommended that this unit should take about 14 hours.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
4.1	Construct word equations and simple balanced chemical equations	This can be linked with law of conservation of mass. Various test-tube reactions can be done – $FeCl_3$ + NaOH and CuSO ₄ + NaOH. (P)	Law of conservation of mass: www.docbrown.info/page04/4_73calcs03co m.htm
		Stress that equations are balanced by inserting a number in front of particular formulae of reactants or products.	<i>Cambridge IGCSE Chemistry: Coursebook</i> (4th edition), Harwood and Lodge
		Learners can then work in groups with simple formulae cards to construct balanced equations from word equations. (G)	<i>Cambridge IGCSE Chemistry: Coursebook</i> (3 rd edition), Harwood and Lodge p109
			Word and balanced equations: www.bbc.co.uk/schools/gcsebitesize/science /ocr_gateway/chemical_concepts/fundament alrev5.shtml
8.1	Describe neutrality and relative acidity and alkalinity in terms of pH measured using Universal Indicator paper (whole numbers only)	An interesting demonstration called Universal Indicator 'Rainbow' could start or conclude this session. (W) Learners can arrange solutions of varying pH values in terms of increasing acidity/basicity, e.g. milk, vinegar, ammonia solution, 'bench' and 'household' chemicals. (P) or (I) The pH scale runs from 0–14 and it is used to show the acidity or alkalinity of a solution. Universal Indicator can be used to find the pH of a solution.	Universal Indicator 'Rainbow': www.nuffieldfoundation.org/practical- chemistry/universal-indicator-rainbow
8.1	Describe the characteristic properties of acids as reactions with metals, bases, carbonates and effect on litmus and methyl orange	Opportunity for experiments to show exothermic nature of neutralisation. Learners could prepare hydrogen and carbon dioxide gas and perform the distinctive tests (see later in this unit). (P) Test-tube experiments linked to Unit 6. (P)	Preparation of hydrogen from magnesium and hydrochloric acid: <i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p182 and 122, Fig. 10.2.1
8.1	Describe the characteristic properties of bases as reactions with acids and with	Illustrate by reference to examples of neutralisation, e.g. indigestion tablets, treatment of bee and wasp stings, addition of sodium hydroxide to (acidic detergent in) shower gel/washing up	There is a useful, interactive video at: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/acids/acidsbasesact.shtml

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	ammonium salts and effect on litmus and methyl orange	 liquid/bubble bath (could look at labels of ingredients). (W) or (G) Test-tube experiments linked to above and heating ammonium salts with hydroxides. (P) Extension – learners could look at safety issues associated with mixing acid cleaner to alkaline bleach. (G) 	Reacting ammonium salts with an alkali: <i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p125, Fig. 10.3.1
11.3	Describe the displacement of ammonia from its salts	Experiments involving heating ammonium salts with or without added hydroxide (test for ammonia, see later in this unit). (P) Illustrate by reference to how the liming of soils by farmers to neutralise acidity can lead to ammonia loss from ammonium salts added as fertilisers: $Ca(OH)_2 + 2NH_4Cl \rightarrow 2NH_3 + CaCl_2 + H_2O$	Making and testing ammonia lesson plan and activity: www.nuffieldfoundation.org/practical- chemistry/making-and-testing-ammonia
8.1(S)	Define <i>acids</i> and <i>bases</i> in terms of proton transfer, limited to aqueous solutions	Can introduce the concept of pH meters (conductivity) to measure pH for advanced learners. (G) or (W) Extension – a low pH indicates a high <u>concentration</u> of H^+ ions and high pH a high concentration of OH ⁻ ions.	Chemistry for Cambridge IGCSE, Norris and Stanbridge, p126 There is more information linked to the IGCSE syllabus at: www.docbrown.info/page03/AcidsBasesSalt s10.htm
8.1(S)	Describe the meaning of weak and strong acids and bases	Emphasise acids are proton donors, e.g. dilute mineral acids, ethanoic acid (vinegar), and bases are proton acceptors, e.g. alkali metal hydroxides and aqueous ammonia. Extension – the terms concentrated and dilute solutions can be introduced and clearly distinguished from weak and strong acids.	<i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p126–127
8.2	Classify oxides as either acidic or basic, related to metallic and non-metallic character	Demonstration of the reaction of the elements with oxygen. (W) Linked to Unit 2 and Unit 3, oxides of sodium, magnesium, carbon, sulfur and phosphorus are all good examples to use. The suggested learning resource is a very good class practical. It suggests labelling solutions as particular oxides and water. For	A very good approach for a class practical to show the pH of oxides: www.nuffieldfoundation.org/practical- chemistry/ph-oxides

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		example, nitric acid solution as nitrogen oxide and water, and sulfuric acid as sulfur dioxide and water. (P)	
		Examples of acid oxides are P_2O_5 , SO_2 , SO_3 and NO_2 .	
		Examples of basic oxides are Na ₂ O, CaO and BaO.	
8.2(S)	Further classify other oxides as neutral or amphoteric	Examples of amphoteric oxides are Al ₂ O ₃ and ZnO. Examples of neutral oxides are nitrogen(I) oxide (N ₂ O), nitrogen(II) oxide (NO) and carbon monoxide (CO).	
13	Describe the manufacture of lime (calcium oxide) from calcium carbonate (limestone) in terms of thermal decomposition	Learners can investigate the limestone cycle by heating a limestone chip <u>very</u> strongly for 20 minutes and cooling to form calcium oxide on the surface. (P) Observe reaction of calcium oxide when drops of water are added to make slaked lime (example of exothermic reaction – steam and solid crumbling). Then add excess water to form limewater and test the pH. (P)	A good method of heating a limestone chip: <i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p204 Fig. 16.5.1 The same method and experimental guidance: www.nuffieldfoundation.org/practical- chemistry/thermal-decomposition-calcium- carbonate Notes on limestone cycle: www.docbrown.info/page01/ExIndChem/ExI ndChem.htm
8.1	Describe and explain the importance of controlling acidity in soil	Teach with section 13 below.	
13	Name the uses of calcium carbonate in the manufacture of iron and of cement	Discuss the importance of limestone in the extraction of iron (link to Unit 6), the building industry and the manufacture of cement. This could be a research activity. (G)	
13	Name some uses of lime and slaked lime as in treating acidic soil and neutralising acidic industrial waste	 Possible issues to discuss include: the importance of using lime or slaked lime for treating excess acidity in soils, thus making unfertile land fertile. Also in neutralising acidic waste products from industry 	A good source of information about using lime on soil, although lime is not really a fertilizer: www.allotment-garden.org/compost-

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	products, e.g. flue gas desulfurisation	 the use of calcium carbonate to remove sulfur dioxide from power station emissions by flue-gas emissions the environmental effects of large scale limestone quarrying to meet the huge demand. 	fertiliser/garden-lime.php A good piece on flue gas desulfurisation www.en.wikipedia.org/wiki/Flue- gas_desulfurization
8.3	Demonstrate knowledge and understanding of preparation, separation and purification of salts as examples of some of the techniques specified in section 2.2.2 and the reactions specified in section 8.1	Experiments should include the preparation of salts such as copper(II) sulfate, magnesium sulfate (filtration method) and sodium or potassium salts (titration method). (Link to Unit 1.)	Methods of preparation are covered in theory at: www.docbrown.info/page03/AcidsBasesSalts 06.htm Practical details of preparing salts: www.nuffieldfoundation.org/practical- chemistry/salts
8.3(S)	Demonstrating knowledge and understanding of the preparation of insoluble salts by precipitation	Extend the salt preparation to include lead(II) chloride, lead(II) iodide and barium sulfate. (Warning: Pb and Ba compounds are poisonous)	Preparation details: www.practicalchemistry.org/experiments/pre paring-an-insoluble-salt,174,EX.html
8.3(S)	Suggest a method of making a given salt from suitable starting material, given appropriate information	Introduce solubility rules and ask learners to suggest a suitable method of preparing a particular salt. (I), (P) or (G) Learners can then put their theory into practice. (P)	Useful information can be found on these pages beginning at: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/acids/acidsbasesrev3.shtml
8.4	Describe the following tests to identify: aqueous cations: aluminium, ammonium, calcium, chromium(III), copper(II), iron(II), iron(III) and zinc (using aqueous sodium hydroxide and aqueous ammonia as appropriate) (Formulae of complex ions are not	This allows a great range of simple test-tube reactions to be conducted. (I) or (P) First, known samples can be used in experiments so that the learners may find out the answers for themselves. (I) or (P) Then the experiments can be made more challenging by using unknown samples of an ionic compound (or even a mixture) to enable learners to develop analytical skills. (I) or (P) Experimental work on flame tests of these ions. (P)	Chemistry for Cambridge IGCSE, Norris and Stanbridge: Testing for aqueous cations, Fig. 11.5.1– 11.5.2, p140–1 Testing for aqueous anions, Fig. 11.6.1, p142–143 Identifying a gas, Fig. 11.4.1–11.4.3, p138– 139 Very good experimental advice on testing

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	required) <i>cations:</i> use of the flame test to identify lithium, sodium, potassium and copper(II) <i>anions:</i> carbonate (by reaction with dilute acid and then limewater), chloride, bromide and iodide (by reaction under acidic conditions with aqueous silver nitrate), nitrate (by reduction with aluminium), sulfate (by reaction under acidic conditions with aqueous barium ions) and sulfite (by reaction with dilute acids and then aqueous potassium manganate(VII))	There is also a spectacular demonstration that could conclude a session on flame tests in the Learning Resources. (W)	and smelling gases: www.nuffieldfoundation.org/practical- chemistry/testing-and-smelling-gases Summary sheet for most of these reactions: www.creative- chemistry.org.uk/gcse/documents/Module22/ N-m22-02.pdf Notes on the tests for anions and cations: www.docbrown.info/page13/ChemicalTests/ ChemicalTestsc.htm#KEYWORDS Flame colours demonstration: www.nuffieldfoundation.org/practical- chemistry/flame-colours-%E2%80%93- demonstration
8.4 (continued)	gases: ammonia (using damp red litmus paper), carbon dioxide (using limewater), chlorine (using damp litmus paper), hydrogen (using lighted splint), oxygen (using a glowing splint) and sulfur dioxide (using aqueous potassium manganate(VII)	Demonstration or experimental work to prepare some of these gases. (W) or (P)	Very good experimental advice on testing and smelling gases: www.nuffieldfoundation.org/practical- chemistry/testing-and-smelling-gases
	Formative assessment	Learner progress could be assessed using questions from 0620 past examination papers and specimen papers available at: http://teachers.cie.org.uk	Unit 4: Past and Specimen Paper questions

Unit 5: Reaction rates

Recommended prior knowledge

Pupils should have an understanding of particle theory (Unit 2) and be familiar with taking accurate measurements (Unit 1).

Context

This unit builds on ideas from Unit 1 and Unit 2. The concepts of this unit will be reinforced in later units.

Outline

This unit offers the opportunity for a considerable range of practical work, which can be used to develop or assess practical skills. Links with enzymes as a biological catalyst and role of light in photosynthesis can be made with IGCSE Biology. This unit is cross-referenced to assessment objectives AO1:1–4; AO2::1–7; AO3: 1–4 and Unit 2.

(Note: (S) denotes material in the Supplement only.)

Teaching time

Based on a total time allocation of 130 contact hours for this Cambridge IGCSE course, it is recommended that this unit should take about 10 hours.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
7.2	Describe and explain the effect of concentration, particle size, catalysts (including enzymes) and temperature on the rate of reactions	Simple test-tube experiments using different-sized marble chippings and hydrochloric acid of different concentrations give a quick visual impression of the factors affecting rate of reaction. (P) or (I) The explanation of the observations may be made in terms of increasing the number of particles that can collide and react for concentration (in a given volume) and particle size. Increasing the energy makes the particles move faster so they collide more frequently. Using a catalyst allows more particles to collide and react.	Video clip introduction to rates: www.bbc.co.uk/schools/gcsebitesize/science /add_ocr_gateway/chemical_economics/reac tionratesact.shtml A good idea for a test-tube reaction to illustrate catalysis: www.nuffieldfoundation.org/practical- chemistry/catalysis-reaction-between-zinc- and-sulfuric-acid There are good explanations in the endorsed textbooks and other suggested textbooks. This is also explained well at: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/reaction/ratesrev3.shtml
7.2	Demonstrate knowledge and understanding of a practical method for investigating the rate of a reaction involving gas evolution Note: candidates should be encouraged to use the term <i>rate</i> rather than <i>speed</i> .	Reactions can involve metals and dilute acids or carbonates and dilute acids. Gas syringes (or measurement of displacement of water by gas in an upturned measuring cylinder) can be used to measure the volume of gas produced. (P) Rules for drawing graphs and the terms independent and dependent variables should be introduced. Measurement of mass decrease in reaction involving evolution of gas could also be demonstrated. (W) Extension – following the progress of a precipitation reaction. (P)	Various practicals Fig. 8.1.1-8.1.3: <i>Chemistry for Cambridge IGCSE</i> , Norris and Stanbridge, p96–97 Various practical experiments to illustrate reaction rates: www.nuffieldfoundation.org/practical- chemistry/rates-reaction
7.2(S)	Devise and evaluate a suitable method for investigating the effect of a given variable on the rate of a reaction	Particle size, concentration and temperature can easily be changed for both the above types of reaction (metals and dilute acids or carbonates and dilute acids). (I) , (P) or (G) Extension – use of data loggers to record experimental results.	See above.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
7.2	Interpret data obtained from experiments concerned with rate of reaction	This allows the use of spreadsheets and graphing to plot volume vs. time data to determine the speed of a reaction. (P) of (G)	A good explanation: www.bbc.co.uk/schools/gcsebitesize/science /add_ocr_pre_2011/chemical_synthesis/rater eactionrev2.shtml
7.2(S)	Describe and explain the effects of temperature and concentration in terms of collisions between reacting particles (An increase in temperature causes an increase in collision rate and more of the colliding molecules have sufficient energy (activation energy) to react whereas an increase in concentration only causes an increase in collision rate.)	Emphasise that a collision of sufficient energy is required for a chemical reaction. Not all collisions lead to chemical reactions. Relate to everyday life.	A very good video clip that uses animations of atoms to explain collision theory: www.bbc.co.uk/learningzone/clips/collision- theory-and-rates-of-reaction/10668.html A good explanation: www.bbc.co.uk/schools/gcsebitesize/science /add_ocr_pre_2011/chemical_synthesis/rater eactionrev3.shtml and www.docbrown.info/page03/3_31rates.htm
7.2	Describe the application of the above factors to the danger of explosive combustion with fine powders, e.g. flour mills, and gases, e.g. methane in mines	Custard powder or cornflour explosion experiment in tin with tight fitting lid may be demonstrated.	Information on the cornflour experiment: www.nuffieldfoundation.org/practical- chemistry/cornflour- %E2%80%98bomb%E2%80%99 Explosive milk: <i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p101, Fig. 8.3.3
6.1	Interpret energy level diagrams showing exothermic and endothermic reactions	Exothermic and endothermic reactions were first introduced in Unit 2. They can be revised here using a class practical. (P) These diagrams represent what happens to the energy of reactants and products and explain why reactions are exothermic or endothermic.	Revision of exothermic and endothermic reactions: www.bbc.co.uk/schools/gcsebitesize/science /add_ocr_21c/chemical_synthesis/whychemi calsrev8.shtml Practical to revise this: www.nuffieldfoundation.org/practical- chemistry/energy-or-out-classifying-reactions

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
			Energy level diagrams: www.bbc.co.uk/schools/gcsebitesize/science /add_ocr_21c/chemical_synthesis/whychemi calsrev9.shtml
6.1(S)	Draw and label energy level diagrams for exothermic and endothermic reactions using data provided	Learners will need to practice this. (I) or (P) The data will tell learners whether a reaction is endothermic or exothermic so that the energy levels can be drawn in an appropriate position. The arrow between the energy levels should point to the product energy level and be labelled with the energy value (usually in kJ/mol).	
6.1(S)	Describe bond breaking as an endothermic process and bond forming as an exothermic	 Emphasise that a collision between two particles with sufficient energy is necessary for a reaction to occur (a successful collision). Not all collisions between particles are successful. Relate to the dodgem fairground ride. You can use a mnemonic or memorable phrase such as 'MexoBendo': Mexo is making is exothermic Bendo is breaking is endothermic. This can then be related to energy level diagrams to explain the two different stages in chemical reactions. This can be linked to the concept of activation energy. 	There is a useful PowerPoint which downloads by <u>pasting in</u> this address: www.ibchem.com/ ppt /shelves/ene/ energyle vels .pps
6.1(S)	Calculate the energy of a reaction using bond energies	A number of examples should be set so that learners can get used to doing this type of calculation. (I) or (P)	A good approach is shown in: <i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p87 Example calculations: www.docbrown.info/page03/3_51energy.htm #1.
7.2(S)	Describe and explain the	Emphasise need of light for photosynthesis. This can be linked to	

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	role of light in photochemical reactions and the effect of light on the rate of these reactions (This should be linked to section 14.4.)	Cambridge IGCSE Biology (0610).	
	Formative assessment	Learner progress could be assessed using questions from 0620 past examination papers and specimen papers available at: http://teachers.cie.org.uk	Unit 5: Past and Specimen Paper questions

Unit 6: Metals and the Reactivity Series

Recommended prior knowledge

Knowledge on particle theory and the reaction of metals with oxygen and acids is preferable.

Context

This unit builds on ideas from Unit 2, Unit 3 and Unit 4. The **concepts** of this unit will be revisited in Unit 11.

Outline

This unit begins by looking at the general properties of metals and the benefits of forming alloys. The reactivity series is introduced and there is a considerable range of practicals that can be used to illustrate the reactivity of different elements. This is related to the method of extraction of different metals. There is an opportunity for discussion about the economic and environmental factors in relation to the location of a manufacturing plant and the benefits of recycling. This unit is cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and Unit 2, Unit 3 and Unit 4.

(Note: (S) denotes material in the Supplement only.)

Teaching time

Based on a total time allocation of 130 contact hours for this Cambridge IGCSE course, it is recommended that this unit should take about 12 hours.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
10.1	List the general physical properties of metals	Physical properties could include appearance, melting/boiling point, conduction of heat and electricity, malleability and ductility. This could be a research activity. (P) or (I)	Physical properties linked to uses: www.s-cool.co.uk/gcse/chemistry/metals- the-reactivity-series/revise-it/properties-of- metals-and-non-metals
			Also there are good sections in the endorsed textbooks and most good textbooks.
3.2.5(S)	Describe metallic bonding as a lattice of positive ions in a 'sea of electrons' and use this to describe the	This explains the physical properties of metals, such as why they have high melting and boiling points, why metals conduct electricity and why they are malleable and ductile.	Notes on metallic bonding: www.docbrown.info/page04/4_72bond5.htm
	electrical conductivity and malleability of metals	Emphasise that the 'free' electrons can move (delocalised electrons) in the metallic structure.	
	maneability of metals	Modelling a metallic structure using a shallow dish of water with detergent. (W) or (P)	Modelling metallic structure experiment: <i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p40 Fig. 3.6.2
10.1	Describe the general chemical properties of metals, e.g. reaction with dilute acids and reaction with oxygen	Chemical properties: could include reactions with water, steam and dilute mineral acids (link with Unit 4). A good way to link into the concept of the Reactivity Series is a practical that links metal-acid reactions of different metals to their exothermicity. This is shown in the learning resources – could be	Exothermic metal-acid reactions www.practicalchemistry.org/experiments/exo thermic-metal-acid- reactions%2C101%2Cex.html Chemical properties, with some animations
		demonstrated, or used as a class practical. (W) or (P)	at: www.s-cool.co.uk/gcse/chemistry/metals- the-reactivity-series/revise-it/reactions-of- metals
10.1	Explain in terms of their properties why alloys are used instead of pure metals	Relate to improvement in corrosion resistance and mechanical properties such as strength. This can be illustrated using a simple particle diagram (particles cannot slide over each other as easily – different sized particles). (Link to Unit 2.)	Background information on some common alloys: www.bbc.co.uk/schools/gcsebitesize/design/ resistantmaterials/materialsmaterialsrev2.sht ml
		Learners, in groups, can research different alloys and their uses and compare the alloy properties to those of pure metals. Their results could be presented in class or on a poster. (G)	and www.bbc.co.uk/schools/gcsebitesize/science /edexcel/metals/obtaining_using_metalsrev5.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		Link to production of steel and brass.	shtml
10.2	 Place in order of reactivity: potassium, sodium, calcium, magnesium, zinc, iron, (hydrogen) and copper, by reference to the reactions, if any, of the metals with: water or steam dilute hydrochloric acid and the reduction of their oxides with carbon. 	 Possible experiments include: potassium, sodium with water (as demonstration only) (W) (link to Unit 2) calcium, magnesium with water (P) or (W) magnesium, zinc with steam (W) magnesium, zinc, iron with dilute hydrochloric acid (P) heating carbon with metal oxides. (W) and (P) 	Establishing the position of carbon in the reactivity series with a class practical and a demonstration: www.nuffieldfoundation.org/practical- chemistry/where-does-carbon-come- reactivity-series This experiment establishes the position of iron in the reactivity series relative to magnesium and copper, using its reaction with oxides: www.practicalchemistry.org/experiments/the- position-of-iron-in-the-reactivity- series%2C173%2CEX.html
10.2(S)	Describe the reactivity series as related to the tendency of a metal to form its positive ion, illustrated by its reaction, if any, with: • the aqueous ions • the oxides of the other listed metals.	 Experiments could include: Reaction of the metals magnesium, zinc, iron and copper with aqueous solutions of their ions. (P) This could be extended to introduce redox reactions (link to Unit 11). Aluminium and iron(III) oxide (Thermite reaction) as a demonstration of the reactions of metals and oxides. (W) 	Good worksheet: www.creative- chemistry.org.uk/gcse/documents/Module5/ N-m05-03.pdf Good advice about conducting this experiment: www.nuffieldfoundation.org/practical- chemistry/displacement-reactions-between- metals-and-their-salts A good animation of these experiments http://group.chem.iastate.edu/Greenbowe/se ctions/projectfolder/flashfiles/redox/home.ht ml
10.2(S)	Account for the apparent unreactivity of aluminium in terms of the oxide layer which adheres to the metal	This could be a research activity. (P) or (G) Do not confuse with rusting of iron.	Go to the bottom of this web page for information about the oxide layer: www.bbc.co.uk/schools/gcsebitesize/science /ocr_gateway/chemical_resources/making_c

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		A demonstration showing the real reactivity of aluminium can be demonstrated using the procedure in the Learning resources. (W)	arsrev1.shtml The real reactivity of aluminium: www.nuffieldfoundation.org/practical-
10.4	 Name the uses of aluminium: in the manufacture of aircraft because of its strength and low density in food containers because of its resistance to corrosion. 	Relate to the uses of aluminium, e.g. aluminium is toxic, but oxide layer enables its use for drinks cans. This could form part of a research activity. (G)	chemistry/real-reactivity-aluminium
10.2	Deduce an order of reactivity from a given set of experimental results	Reactions of metals with water, steam and dilute hydrochloric or sulfuric acid (for advanced candidates also with other aqueous metal ions). Learners, in groups, can be given three/four elements on cards and asked to put in order of reactivity and present their reasoning to the class. (G)	This web page gives suggestions of video clips and animations that may be used: www.chemguide.co.uk/igcse/chapters/chapt er8.html
10.3	Describe the ease in obtaining metals from their ores by relating the elements to the reactivity series	Electrolysis, carbon + metal oxide (reduction using carbon) and mining of native metal as the different methods. Although we mention electrolysis here the extraction of aluminium from bauxite is covered in Unit 11. Demonstration of the reduction of lead(IV)oxide and charcoal blocks with a blowpipe. (W) A test-tube class experiment using charcoal powder, lead(IV) oxide and copper(II) oxide. (P) Emphasise that metals above carbon in the reactivity series are extracted by electrolysis. Metals below carbon are usually extracted by heating their corresponding metal oxide with carbon.	Class experiment, extracting metals with carbon (charcoal): www.nuffieldfoundation.org/practical- chemistry/extracting-metals-charcoal Video clips on the various methods of extraction: www.rsc.org/Education/Teachers/Resources /Alchemy/ Notes on extraction of metals: www.bbc.co.uk/schools/gcsebitesize/science /aqa_pre_2011/rocks/metalsrev1.shtml www.chemguide.co.uk/inorganic/extractionm

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		 Relate these three methods to the position of the metal in the reactivity series. Possible issues to discuss include: the economic and environmental cost of the high energy required in metal extraction processes the large input of non-renewable fossil fuel resources into electrolysis and carbon reduction the importance of recycling metals. 	enu.html
10.3	Describe and state the essential reactions in the extraction of iron from hematite	 Emphasise the use of a blast furnace and the raw materials: hematite (iron ore), coke and hot air. Stress limestone is added to remove acidic impurities like SiO₂ in the ore and forms a useful by-product called calcium silicate (slag). Iron from the blast furnace is 95% pure, very brittle and is called cast iron. Possible issues to discuss include: local environmental effect of large scale mining of hematite the economic and environmental cost of the high energy demand of blast furnace the large input of non-renewable fossil fuel resources into carbon reduction the need to collect waste - toxic carbon monoxide, which can be used as a fuel to reduce energy cost of plant 	Iron and steel manufacture: www.chemguide.co.uk/inorganic/extraction/ir on.html www.bbc.co.uk/schools/gcsebitesize/science /aqa_pre_2011/rocks/metalsrev2.shtml Use the iron and steel video clip from: www.rsc.org/Education/Teachers/Resources /Alchemy/
10.3	Describe the conversion of iron into steel using basic oxides and oxygen	The impurities in cast iron are removed to form pure iron. Pure iron is very soft and rusts easily. So it is converted into various types of steel by adding calculated amounts of carbon/other metals. Link to 10.3(S) below. Use of Basic Oxygen Process (O ² lance) limited to the removal of	This is a good video that could be used. It also summarises several of the other learning objectives covered in this unit: www.bbc.co.uk/schools/gcsebitesize/science /edexcel/metals/obtaining_using_metalsact.s html

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		carbon (good example of redox chemistry to illustrate syllabus section 7.4). (Link to Unit 11.)	
10.4(S)	Describe the idea of changing the properties of iron by the controlled use of additives to form steel alloys	Use of other elements (often transition elements) and changing carbon content to alter properties such as strength and hardness. Illustrate the above structure changes using a particle model, emphasising that the different sized atoms stop the layers sliding over one another easily. (Link to Unit 2.) Opportunity for data analysis activities to link steel specifications to use. (I) or (P)	The video described in the previous row is excellent for this: www.bbc.co.uk/schools/gcsebitesize/science /edexcel/metals/obtaining_using_metalsact.s html A particle model: <i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p176 Fig. 14.4.1
10.4	Name the uses of mild steel (car bodies and machinery) and stainless steel (chemical plant and cutlery)	Relate to greater resistance to chemical attack of stainless steel. This could be research activity. (G)	
10.3(S)	Describe in outline, the extraction of zinc from zinc blende	 Raw materials zinc blende, coke and air: roast the zinc sulfide in air to form ZnO and SO₂ then it is a similar process to iron manufacture – the zinc oxide is heated with coke (carbon) reduced to form Zn and carbon monoxide (except there is no limestone and zinc vaporises and condenses in pans high in the furnace). Learners, in groups, could produce a flowchart or a poster of the process. (G) Possible issues to discuss: high energy demand of process and input of non-renewable fossil fuel 	Information about extraction: www.zinc.org/basics/zinc_production www.newton.dep.anl.gov/askasci/chem03/ch em03435.htm
		 polluting effects of waste sulfur dioxide the need to recycle zinc. 	
10.4(S)	Explain the uses of zinc for galvanising and for making brass	This could be a research activity. (G) It can be expanded to include coinage and musical instruments.	This is usually covered well in textbooks. Information about galvanising can be found

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		This links with galvanising and sacrificial protection in Unit 3 and it is a good idea to reinforce 11.2(S) from this unit here.	at: www.bbc.co.uk/schools/gcsebitesize/science /triple_ocr_gateway/chemistry_out_there/red ox_reactions/revision/2/
10.4	Name the uses of copper related to its properties (electrical wiring and in cooking utensils)	Properties such as electrical conductivity, melting point and general low chemical reactivity. This could be a research activity. (G) Uses can be expanded to include coinage. Link to Unit 11 – regarding the purification of copper.	
10.3	Discuss the advantages and disadvantages of recycling metals, limited to iron/steel and aluminium	This could be a research activity with presentations or poster displays. (G) You may prefer to concentrate on iron and steel here and link this to Unit 11 when aluminium extraction is covered.	There are many websites with good information. Good section at bottom of this web page: www.chemguide.co.uk/inorganic/extraction/ir on.html Although aimed at the UK this information is useful for the advantages of recycling iron/steel. www.tatasteeleurope.com/en/responsibility/ cspr/recycling_steel_packaging/why_recycle _steel/ www.recyclemetals.org/tim_cans_story
9.4	Describe the transition elements as a collection of metals having high densities, high melting points and forming coloured compounds, and which, as elements and compounds, often act as catalysts	Relevant elements for colours include iron (valency of 2 and 3), manganese (in potassium manganate(VII)), and copper(II). Learners can be introduced to different coloured ions and asked to predict the colours of some compounds. Catalysts to include nickel for hydrogenation of alkenes/fats, platinum/rhodium/palladium in car catalytic converters and iron in	Transition metal properties: www.bbc.co.uk/schools/gcsebitesize/science /edexcel/patterns/transitionmetalsrev1.shtml

Learning objectives	Suggested teaching activities	Learning resources
	the Haber process (also vanadium(V) oxide in the Contact process). This could be set as a research task. (G)	
	Possible issues to discuss include the importance of catalysts in lowering the energy demand of industrial processes and hence conserving fossil fuel and increasing profitability.	
	This is a good place to introduce the naming of the ions and to point out that oxidation states are used to name compounds. (Links to Section 7.4 of the syllabus and to Unit 11 of this scheme of work.)	
	Encourage learners to make comparisons with the Group I metals covered in Unit 2.	
Know that transition elements have variable oxidation states	You could consider introducing this at this point. This links to Unit 11.	
Describe and explain the action of heat on the hydroxides, carbonates and nitrates of the listed metals Note: the listed metals are: potassium, sodium, calcium, magnesium, zinc, iron, (hydrogen) and copper,	 Emphasise that this type of reaction is called thermal decomposition. Describe the action of heat on the hydroxides, carbonates and nitrates of potassium, sodium calcium, magnesium, zinc, iron(II), iron(III), copper(II). (W) and (P) Note: Action of heat on nitrates should be demonstrated. The more reactive the metal, the more stable its nitrate, hydroxide or carbonate. Most metal hydroxides decompose to the corresponding metal oxide and water when heated. Potassium and sodium carbonate will not decompose, even after prolonged heating. The other metal carbonates will give the metal oxide and carbon dioxide. Potassium and sodium nitrate decompose to nitrites and oxygen. 	A procedure for demonstrating the decomposition of nitrates: <i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p166–167 and Fig. 3.6.2. A demonstration of 'writing with fire': www.nuffieldfoundation.org/practical- chemistry/thermal-decomposition-nitrates- writing-fire An experimental procedure for heating carbonates: www.nuffieldfoundation.org/practical- chemistry/thermal-decomposition-metal- carbonates
	Know that transition elements have variable oxidation states Describe and explain the action of heat on the hydroxides, carbonates and nitrates of the listed metals Note: the listed metals are: potassium, sodium, calcium, magnesium, zinc, iron,	Know that transition elements have variable oxidation statesYou could consider introducing this at this point. This links to Unit 11.Know that transition elements have variable oxidation statesYou could consider introducing this at this point. This links to Unit 11.Describe and explain the action of heat on the hydroxides, carbonates and nitrates of the listed mealsEmphasise that this type of reaction is called thermal decomposition.Describe the listed metals are: potassium, sodium, calcium, magnesium, zinc, iron, (hydrogen) and copper,Emphasise that this type of neation of heat on the composition.Note: the listed metals are: potassium, sodium, calcium, magnesium, zinc, iron, (hydrogen) and copper,Emphasise that this type of neation of heat on the composition.Note: the listed metals are: potassium, sodium, calcium, magnesium, zinc, iron, (hydrogen) and copper,Mote: the metal, the more stable its nitrate, hydroxide or carbonates will not decompose, even after prolonged heating. The other metal carbonates will give the metal

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		The others on the list decompose to oxides, nitrogen dioxide and oxygen when heated.	
	Formative assessment	Learner progress could be assessed using questions from 0620 past examination papers and specimen papers available at: http://teachers.cie.org.uk	Unit 6: Past and Specimen Paper questions

Unit 7: Covalent bonding

Recommended prior knowledge

Learners should have a basic knowledge of atomic structure, ionic bonding and the layout of the Periodic Table.

Context

This unit builds on Unit 2 and Unit 6. The concepts of this unit will be revisited in Unit 9.

Outline

This unit starts by looking at covalent bonding in simple molecules and comparing their properties to those of ionic compounds. Giant covalent structures are introduced and their key features explored. Opportunity for learners, in groups, to make models of these giant structures. This unit is cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and Unit 2 and Unit 6.

(Note: (S) denotes material in the Supplement only.)

Teaching time

Based on a total time allocation of 130 contact hours for this Cambridge IGCSE course, it is recommended that this unit should take about 4 hours.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
3.2.3	Describe the formation of single covalent bonds in H_2 , Cl_2 , H_2O , CH_4 , NH_3 and HCl as the sharing of pairs of electrons leading to the noble gas configuration	Use overlapping circles to show where the bonding electrons are. Learners should distinguish the origin of the electrons by dots and crosses. Learners can use mini-whiteboards to draw electron diagrams as a class activity. (P) or (I)	Notes on covalent bonding in some of these molecules: www.docbrown.info/page04/4_72bond3.htm www.bbc.co.uk/schools/gcsebitesize/science /add_gateway_pre_2011/periodictable/coval entbondingrev1.shtml
3.2.3(S)	Describe the electron arrangement in more complex covalent molecules such as N ₂ , C ₂ H ₄ , CH ₃ OH and CO ₂	As above examples. Extension – some complicated examples like AsC l_3 , SO ₃ , PC l_5 and BF ₃ .	Notes on covalent bonding in these complex molecules: www.docbrown.info/page04/4_72bond3.htm
3.2.3	Describe the differences in volatility, solubility and electrical conductivity between ionic and covalent compounds	Learners can be given samples of salt, powdered wax and silver sand as three examples of white solids. They can carry out experiments to identify the bonding in each. (P) For advanced learners, sugar can be given as an additional example to show that some simple covalent compounds are soluble in water. (P) A database could be set up for a range of compounds of all bonding types with fields for each property. (W) or (G) More advanced learners could be asked to design questions based on the properties, which would produce lists of compounds with a particular bonding type. (P)	PowerPoint presentation on simple covalent compound properties at: http://noadswood.hants.sch.uk/science/noad swood_science_website/GCSE_Additional_ ScienceChemistry_I.html
3.2.3(S)	Explain the differences in melting point and boiling point of ionic and covalent compounds in terms of attractive forces	Although covalent bonds are strong, the attractive forces between simple covalent molecules are weak so they have low melting and boiling points. Ionic compounds have strong electrostatic forces between the ions, giving high melting and boiling points.	This presentation is useful and so are some of the slides towards the end of the lonic Bonding compounds presentation at the same site: http://noadswood.hants.sch.uk/science/noad swood_science_website/GCSE_Additional_ ScienceChemistry_I.html.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
			Pages 1–2 of this website offer useful information and an animation: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa_pre_2011/atomic/differentsubrev1. shtml
3.2.4	Describe the giant covalent structures of graphite and diamond	 Ball and spoke models will be useful here. (W) Emphasise key features in their structures: Graphite: each carbon attached to three other carbon atoms hexagonal ring layered lattice structure delocalised electrons within each layer weak intermolecular forces between the layers. Diamond: each carbon forms four covalent bonds with other carbon atoms each carbon has a tetrahedral arrangement all electrons are localised in covalent bonds. 	Good interactive site on giant covalent bonding: www.avogadro.co.uk/structure/chemstruc/ne twork/g-molecular.htm
3.2.4	Relate their structures to the use of graphite as a lubricant and a conductor and of diamond in cutting tools	Relate the above key features to the properties of graphite and diamond – high melting/boiling point, conductivity, hardness. Discuss the importance of the one-directional strength of graphite to its use to reinforce fishing rods, sports rackets and modern polymer-based materials such as those used to build aircraft.	
3.3.4(S)	Describe the macromolecular structure of silicon(IV) oxide (silicon dioxide)	Ball and spoke models will be useful here. Note the similarities and differences between SiO_2 and diamond.	Worksheet activity to compare the differences between SiO ₂ and CO ₂ : www.schools.longman.co.uk/gcsechemistry/ worksheets/index.html
3.3.4(S)	Describe the similarity in properties between diamond and silicon(IV)	 Emphasise the key features in SiO₂: tetrahedral arrangement of silicon atoms an oxygen atom between each pair of silicon atoms 	Good information about giant covalent structures at: www.chemguide.co.uk/atoms/structures/gian

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	oxide, related to their structures	 each silicon forms four covalent bonds to other oxygen atoms each oxygen forms two covalent bonds to other silicon atoms. This could be a research activity. (I), (P) or (G) 	tcov.html and www.bbc.co.uk/schools/gcsebitesize/science /add_aqa_pre_2011/atomic/differentsubrev3. shtml
	Formative assessment	Learner progress could be assessed using questions from 0620 past examination papers and specimen papers available at: http://teachers.cie.org.uk	Unit 7: Past and Specimen Paper questions

Unit 8: Organic 1

Recommended prior knowledge

Learners should have completed the Unit 2 and Unit 7 prior to the teaching of this unit.

Context

This unit builds on Unit 2 and Unit 7. The concepts in this unit will be revisited in Unit 10.

Outline

This unit starts by introducing the different types of organic molecules (alkanes, alkenes, alcohols and carboxylic acids) and how their functional groups are related to their properties. The process of fractional distillation of crude oil is discussed with its importance as the main source of organic molecules. There is opportunity for learners to research and explore the vast variety of everyday products that originate from crude oil. In addition, learners have the chance to debate non-renewable versus renewable fuel. This unit is cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and Unit 2 and Unit 7.

(Note: (S) denotes material in the Supplement only.)

Teaching time

Based on a total time allocation of 130 contact hours for this Cambridge IGCSE course, it is recommended that this unit should take about 14 hours.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
14.1	Name and draw the structures of methane, ethane, ethene, ethanol, ethanoic acid and the products of the reactions stated in syllabus references 14.4–14.6	Learners need to be able to draw full structural formulae (showing all atoms and all bonds). Stress the importance of correct bond attachments. Establish rules of number of bonds formed for carbon, hydrogen and oxygen (links to valency, Group number and electronic configuration are possible, but not essential, if Unit 7 has been covered). Learners, in pairs or groups, could be given molecules to build using model kits or name/draw using mini-whiteboards. (P) or (G)	Excellent model kits can be purchased: www.molymod.com Drawing packages and other software are listed at: www.acdlabs.com/resources/freeware/
14.1(S)	Name and draw the structures of the unbranched alkanes, alkenes (not <i>cis-trans</i>), alcohols and acids containing up to four carbon atoms per molecule	Extend the practical above by increasing the number of carbon, hydrogen and oxygen atoms available for modelling. (G) Learners could use mini-whiteboards for drawing structures. (I) or (P) Learners could be introduced to the term 'functional group' to aid the identification of these organic compounds, for example alkene C=C, alcohol –OH, carboxylic acids –COOH. You may wish to introduce the ester functional group here. (Link to Unit 10.)	Good website for teaching notes, or for possible use by learners: www.chemistryrules.me.uk/junior/organic.ht m#JunOrgAlkeneName
14.1	State the type of compound present, given a chemical name ending in <i>-ane, -ene,</i> <i>-ol,</i> or <i>-oic acid</i> , or a molecular structure	Cards with names or structures could be used as an activity. (G)	
14.3	Describe the concept of homologous series as a 'family' of similar compounds with similar properties due to the presence of the same functional group	Learners could make models from 14.1 to determine the structural formula of successive members. The molecular, empirical formula and general formula can be worked out. Emphasise the difference of CH ₂ between successive members of the homologous series. (P) or (G) Stress that the functional group determines chemical reactions,	Database of chemical compound data: http://webbook.nist.gov/chemistry/

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		but $M_{\rm r}$ and length of molecule affects physical properties, e.g. state, boiling point.	
		Opportunity for ICT: learners could develop (or be provided with) a spreadsheet showing number of carbon atoms. They could devise formulae for calculating number of hydrogen atoms for alkanes/alkenes/alcohols and/or carboxylic acids. Formulae could also be derived to calculate molecular masses. If boiling point and/or enthalpy change of combustion data are included, there are opportunities for learners to produce line graphs to show trends of mass, boiling points and enthalpies of combustion against number of carbon atoms down the series. (P)	
14.3(S)	Describe the general characteristics of a homologous series	Discuss the effect of increased molecular mass down the series on boiling point (see suggested ICT activity, above). (W) or (G) Link to fractional distillation (section 14.2 below).	Homologous series: www.bbc.co.uk/schools/gcsebitesize/science /triple_edexcel/organic_chemistry/organic_c hemistry/revision/5/
14.3(S)	Recall that the compounds in a homologous series have the same general formula		Homologous series: www.bbc.co.uk/schools/gcsebitesize/science /triple_edexcel/organic_chemistry/organic_c hemistry/revision/5/
14.3(S)	Describe and identify structural isomerism	Emphasise drawing of structural formulae to represent isomers. Use butane as the initial example and extend to other examples.	
		Learners could use mini-whiteboards or design posters showing all the isomers of a particular alkane with names. (G) or (P)	
6.2	State the use of hydrogen as a fuel	Possible demonstrations include burning hydrogen balloons and fuel cells (link to Unit 11). (W)	Exploding balloons: www.nuffieldfoundation.org/practical- chemistry/exploding-balloons
		Possible group work for learners to present the pros and cons of using hydrogen as a fuel source. (G)	An alternative with a plastic bottle: www.nuffieldfoundation.org/practical-
		 Possible issues to discuss: the high cost of hydrogen due to the energy demand of electrolysis of water/brine 	chemistry/controlled-explosion-hydrogen-air- mixture

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		 that obtaining hydrogen involves input of fossil fuel energy for electrolysis that hydrogen is difficult to store for fuel use, particularly for cars, due to explosion risk and need for heavy pressurised cylinders that hydrogen is non-polluting when burnt, the only product being water. 	A good source of information: www.alternative-energy- news.info/technology/hydrogen-fuel/ http://auto.howstuffworks.com/fuel- efficiency/alternative-fuels/fuel-cell.htm
14.2	Name the fuels coal, natural gas and petroleum	Awareness of the finite nature of fossil fuel supply and the role of chemistry in the 'search for solutions' for alternative fuels and alternative industrial feedstock. Awareness of the competing demand for hydrocarbons as fuels and as raw materials for the petrochemical industry. This could be a research activity. (G)	
14.2	Name methane as the main constituent of natural gas	Relate to use in the home and in Bunsen burners.	
14.2	Describe petroleum as a mixture of hydrocarbons and its separation into useful fractions by fractional distillation	 Define a hydrocarbon as a molecule containing carbon and hydrogen atoms only. Awareness that the use of the fractions as fuels is rapidly depleting crude oil, the essential raw material for plastics and other petrochemicals. Discuss the supply and demand problem for some fractions – link to cracking in this unit. Also why the composition of crude oil differs between locations. This links to Unit 2 and there is an opportunity to demonstrate fractional distillation of synthetic crude oil as suggested. 	Video clip and useful information on fractional distillation: www.rsc.org/Education/Teachers/Resources /Alchemy/. http://science.howstuffworks.com/environme ntal/energy/oil-refining1.htm
14.2	Describe the properties of molecules within a fraction	This could be linked to the above and tackled as a research activity. (G)	See the above resources.
14.2	Name the uses of the	Opportunity for display work. Learners can find magazine pictures	

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	 fractions as: refinery gas for bottled gas for heating and cooking gasoline fraction for fuel (petrol) in cars naphtha fraction for making chemicals kerosene/paraffin fraction for jet fuel diesel oil/gas oil for fuel in diesel engines fuel oil fraction for fuel for ships and home heating systems lubricating fraction for lubricants, waxes and polishes bitumen for making roads. 	and advertisements to illustrate the uses of the fractions. (G) The pictures can be mounted on a large outline of the fractionating column, showing where fractions emerge, with boiling points and chemical detail, such as number of carbon atom range in each fraction. (W)	
14.4	Describe the properties of alkanes (exemplified by methane) as being generally unreactive, except in terms of burning	Lack of reactivity is partly due to the presence of strong C–C and C–H bonds only (link to Unit 5).	
14.4(S)	Describe substitution reactions of alkanes with chlorine	Demonstration of the reactions of bromine with liquid alkanes/cyclo-alkanes in strong sunlight shows the general substitution reaction for alkanes. (W)	www.chemguide.co.uk/organicprops/alkanes /halogenation.html
14.4	Describe the bonding in alkanes	Single covalent bonds only (links to Unit 7).	Information at: www.bbc.co.uk/schools/gcsebitesize/science /aqa_pre_2011/rocks/fuelsrev1.shtml
14.5	Describe the manufacture of alkenes and of hydrogen by cracking	Paraffin on mineral wool can be cracked using hot broken pot or granules of aluminium oxide as a catalyst. The resultant gas can be collected over water. (P)	Information on experiments: www.nuffieldfoundation.org/practical- chemistry/cracking-hydrocarbons

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		Awareness of the importance of cracking to the petrochemical industry to meet demand for smaller molecules e.g. petrol components, from larger molecules in crude oil for which there is less demand. Hydrogen is also a by-product. Link to the Haber process in Unit 12.	and <i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p220 Fig. 18.2.2. A useful animation and information: www.bbc.co.uk/schools/gcsebitesize/science /edexcel/fuels/hydrocarbonsrev2.shtml
14.5(S)	Describe the properties of alkenes in terms of addition reactions with bromine, hydrogen and steam	 The addition of bromine water to the product of the above reaction demonstrates this addition reaction. (P) Emphasise the difference between an addition and a substitution reaction. Examples of hydrogen addition include the hydrogenation of polyunsaturated vegetable oils to make solid margarines. 	
14.5	Distinguish between saturated and unsaturated hydrocarbons • from molecular structures • by reaction with aqueous bromine	Relate this to the modelling at the start of the unit and the reactions of alkanes and alkenes mentioned above. Emphasise that a saturated molecule contains only single covalent bonds and an unsaturated molecule contains one or more C=C double bonds.	
14.5	Describe the formation of poly(ethene) as an example of addition polymerisation of monomer units	Demonstration of the polymerisation of styrene or acrylates shows the general addition polymerisation reaction. (W)	Video clip on polyethene: www.rsc.org/Education/Teachers/Resources /Alchemy/
14.6	Describe the manufacture of ethanol by fermentation and by the catalytic addition of steam to ethene	Demonstration of fermentation of sugar is possible here. (W) (Link with Unit 10.)	Practical on fermentation: <i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p244 Fig. 20.4.1.
14.6(S)	Outline the advantages and disadvantages of these two methods of manufacturing	Learners can tabulate the pros and cons of each process. (P)	A very useful comparison of the two methods: www.bbc.co.uk/schools/gcsebitesize/science

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	ethanol		/triple_edexcel/organic_chemistry/organic_c hemistry/revision/4/
14.6	Describe the properties of ethanol in terms of burning	Discuss the importance of ethanol as a renewable fuel, already used in many countries where sugar cane grows easily, e.g. Brazil, Italy. Ethanol may become a 'fuel for the future' as fossil fuel supplies run out. You could also discuss with learners the implications of using land for growing fuel crops, which could be used to grow crops for food. (G) or (W)	
14.6	Name the uses of ethanol as a solvent and as a fuel	This could be a research activity with a presentation or poster display. (G)	A video looking at properties, uses and manufacture of ethanol: www.my-gcsescience.com/videos/ethanol- and-its-uses/
	Formative assessment	Learner progress could be assessed using questions from 0620 past examination papers and specimen papers available at: http://teachers.cie.org.uk	Unit 8: Past and Specimen Paper questions

Unit 9: Amount of substance

Recommended prior knowledge

Learners should have a good understanding of the Periodic Table, bonding and structure.

Context

This unit builds on ideas from earlier units and lays the foundations for Unit 10.

Outline

This unit begins with an introduction to writing chemical formulae and balancing equations. These ideas can be linked with the importance of calculating reacting quantities especially for industrial scale preparations. The unit gives learners opportunities to investigate percentage yield and percentage purity in their practical work, which can be linked to its importance in chemical economics. This unit is cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1-5 and Unit 2.

(Note: (S) denotes material in the Supplement only.)

Teaching time

Based on a total time allocation of 130 contact hours for this Cambridge IGCSE course, it is recommended that this unit should take about 12 hours.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
4.1(S)	Determine the formula of an ionic compound from the charges on the ions present	Learners can be given a list of ions encountered in IGCSE and rules for writing chemical formulae. They can construct correct chemical formulae from ions (link to Unit 2). (P) or (I) The charges on ions should be linked with the Group number of the element in the Periodic Table. They can be introduced to the idea of using brackets when more than one of a complex ion is present.	Basic information on chemical formulae: www.bbc.co.uk/schools/ks3bitesize/science/ chemical_material_behaviour/compounds_m ixtures/revise4.shtml Ion charges and ionic formulae: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/bonding/ionic_bondingrev7.shtml and www.occc.edu/kmbailey/chem1115tutorials/f ormulas_ionic.htm
4.1	Deduce the formula of a simple compound from a model or a diagrammatic representation	This can be linked with organic molecules but also include examples from suitable pictures of giant ionic structures. This could be a group activity with learners being given several examples. (G) Learners need to be able to use both molecular and full structural formulae. (Link to Unit 8).	
4.1(S)	Construct equations with state symbols, including ionic equations	Introduce the four state symbols (s), (l), (g) and (aq). This should be linked to all theoretical and experimental work during the course. Ionic equations (link with Unit 11). This could be linked to the formation of precipitates in Unit 4.	Ionic equations and precipitates: www.bbc.co.uk/schools/gcsebitesize/science /triple_ocr_gateway/how_much/ionic_equatio ns/revision/1/
4.1(S)	Deduce the balanced equation for a chemical reaction, given relevant information	The information could be masses or amounts of material that react together. See below.	
4.1	Define <i>relative atomic mass</i> , A_{r} , as the average mass of naturally occurring atoms of an element on a scale where the ¹² C atom has a mass of	You could introduce this by looking at the actual masses of some atoms and how very tiny these masses are. This leads in to the concept of relative masses where all atoms are compared to the standard atom, carbon-12.	Information on relative atomic mass and a test: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/atomic_structure/atomic_structurer ev4.shtml

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	exactly 12 units		
4.1	Define <i>relative molecular</i> <i>mass</i> , M_r , as the sum of the relative atomic masses (<i>Relative formula mass</i> or M_r will be used for ionic compounds (Calculations involving reacting masses in simple proportions may be set. Calculations will not involve the mole concept.)	Learners can use <i>A</i> _r s to calculate the relative molecular mass from the molecular formula. Use of mini-whiteboards, bingo and crossword activities could be used. (W) or (P)	Also information at: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/atomic_structure/atomic_structurer ev3.shtml
4.2(S)	Define the <i>mole</i> and the <i>Avogadro constant</i>	Emphasise the idea of a mole being a particular amount of substance with the Avogadro number (Avogadro constant) of specified particles. Learners should be introduced to the terms 'stoichiometry', 'limiting reactant' and 'in excess' which may be used in calculations.	This link takes you to a download of a useful PowerPoint: www.google.co.uk
4.2(S)	Use the molar gas volume, taken as 24 dm ³ at room temperature and pressure	Learners will need plenty of practice. An experiment reacting magnesium with dilute sulfuric acid can be used to find/use the molar gas volume. (P) Demonstrate how to calculate the A_r of Lithium (Li + H ₂ O) or Calcium (Ca + H ₂ O). (Link to % purity later in this unit).	<i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p60 Fig. 5.4.2
4.2(S)	Calculate stoichiometric reacting masses, volumes of gases and solutions, and concentrations of solutions expressed in g/dm ³ and mol/dm ³	Learners will need plenty of practice. An experiment to find the formula of copper oxide could be demonstrated, or if equipment is available this could be a class practical. (W) or (P) This can be linked back to the preparation of salts by titration, e.g.	Finding the formula of copper oxide: www.nuffieldfoundation.org/practical- chemistry/finding-formula-copper-oxide Titrating NaOH with HC <i>I</i> : www.practicalchemistry.org/experiments/titra ting-sodium-hydroxide-with-hydrochloric-

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	(Calculations involving the idea of limiting reactants may be set. Questions on the gas laws and the conversion of gaseous volumes to different temperatures and pressures will <i>not</i> be set.)	preparation of sodium chloride. (P) Learners should also be competent at handling reactant mass data given in tonnes for industrial scale reactions, e.g. preparation of salts for use as fertilisers. (Link to Unit 12.)	acid,129,EX.html
4.2(S)	Calculate empirical formulae and molecular formulae	Learners will need plenty of practice. Suggested experiment – heating a coil of magnesium ribbon to complete oxidation in a crucible. This gives appropriate data if an accurate digital balance is available. (P)	Finding the formula of magnesium oxide: www.practicalchemistry.org/experiments/the- change-in-mass-when-magnesium- burns,207,EX.html The other experiment that illustrates this is 'Finding the formula of copper oxide' above.
4.2(S)	Calculate percentage yield and percentage purity	 % yield can be calculated by analysing the results for simple displacement reactions. (P) % purity can be calculated by working out how much copper is in a known mass of malachite or by using titration techniques to estimate, for example, the amount of iodine in a known mass of potassium iodate or the percentage purity of iron wire. (P) Extension – learners can be introduced to the concept of atom economy and the benefits of designing processes with high atom economy. This could involve group work and presentations based on their findings. 	Finding how much copper(II) sulfate can be obtained from a copper ore: <i>Chemistry for Cambridge IGCSE</i> , Norris and Stanbridge, p62 Fig. 5.5.1 Finding the percentage purity of iron wire: http://schools.longman.co.uk/gcsechemistry/ worksheets/pdfs/worksheet4.pdf
	Formative assessment	Learner progress could be assessed using questions from 0620 past examination papers and specimen papers available at: http://teachers.cie.org.uk	Unit 9: Past and Specimen Paper questions

Unit 10: Organic 2

Recommended prior knowledge

Learners should have completed the units on Covalent Bonding and Organic 1.

Context

This unit builds on ideas from Unit 7 and Unit 8 and lays the foundations for Unit 11.

Outline

This unit follows on from Unit 8 and looks at the chemistry of the alcohols and carboxylic acids in more detail. A variety of synthetic and natural macromolecules are introduced together with their uses, as well as the environmental problems that they cause. Opportunity for learners to research and discuss the pros and cons of using the different types of polymers. This unit is cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and Unit 7 and Unit 8. (Note: **(S)** denotes material in the Supplement only.)

Teaching time

Based on a total time allocation of 130 contact hours for this Cambridge IGCSE course, it is recommended that this unit should take about 12 hours.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
14.7(S)	Describe the formation of ethanoic acid by the oxidation of ethanol by fermentation and with acidified potassium manganate(VII)	Awareness of implications for storage of ethanol to prevent spoilage. Extension to the purification by distillation (link to Unit 1) and the term 'reflux'.	Information about carboxylic acids: www.bbc.co.uk/schools/gcsebitesize/science /triple_aqa/alcohols_carboxylic_acids_esters /carboxylic_acids/revision/1/
14.7	Describe the properties of aqueous ethanoic acid	Link to Unit 4. This is a good opportunity to revise properties of acids using simple test-tube reactions. (P)	
14.7(S)	Describe ethanoic acid as a typical weak acid	 Learners can illustrate this by: testing its pH with Universal Indicator comparing the rate of reaction with magnesium with that of hydrochloric acid, a strong acid. (P) 	
14.7(S)	Describe the reaction of a carboxylic acid with an alcohol in the presence of a catalyst to give an ester	This can be shown by a simple test-tube experiment. (W) or (P) with careful assessment of risks. Learners can be given samples of esters to smell. Risk assessment! Awareness of importance of sweet-swelling esters as food and cosmetics additives.	Details of this experiment: <i>Chemistry for Cambridge IGCSE</i> , Norris and Stanbridge, p227 Fig. 18.5.1 Information on esters: www.bbc.co.uk/schools/gcsebitesize/science /ocr_gateway_pre_2011/carbon_chem/3_sm ells1.shtml A link about the smells of common esters: www.chm.bris.ac.uk/motm/ethylacetate/smell s.htm
14.1(S)	Name and draw the structural formulae of the esters which can be made from unbranched alcohols and carboxylic acids, each containing up to four carbon atoms	This could be a problem-solving activity to deduce the structural formulae and may be combined with the experimental preparations detailed in the learning resource. (P) or (G)	The link mentioned above is useful here: www.bbc.co.uk/schools/gcsebitesize/science /ocr_gateway_pre_2011/carbon_chem/3_sm ells1.shtml Experiments to produce some of these esters: www.nuffieldfoundation.org/practical- chemistry/making-esters-alcohols-and-acids

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
14.8.1	Define polymers as large molecules built up from small units (monomers)	Demonstrations of the preparation of poly(phenyltethene), commonly known as poly(styrene), or poly(acrylates) are possible here. (W) Link to Unit 8. Importance of crude oil as a raw material for polymers and its finite supply.	Experimental procedure for poly(phenylethene): www.nuffieldfoundation.org/practical- chemistry/addition-polymerisation Notes on addition polymers: www.docbrown.info/page04/OilProducts07.ht m
14.8.1(S)	Understand that different polymers have different units and/or different linkages	This could be a research activity to look at different polymers, their structural formulae and their properties, with presentations or poster displays. (G)	
14.8.2	Name some typical uses of plastics and of man-made fibres such as nylon and <i>Terylene</i>	 Relate this to everyday items such as drinks containers, detergent bottles and other household items as well as clothes. Look at the underneath of bottles to determine the polymer and on clothing labels to find the fibres used. Opportunity for display work about clothes, packaging (real packaging can be stuck to display) or building to show where polymers are used, their names, classification as synthetic or natural and diagrammatical representation of polymerisation. (G) Extension – to investigate smart polymers (hydrogels – super absorbent polymers) in disposable nappies/diapers. (P) Issues of disposal can be included. 	Video clip on uses of polymers: www.bbc.co.uk/learningzone/clips/uses-of- polymers/1467.html Experiments with hydrogels: www.nuffieldfoundation.org/practical- chemistry/experiments-hydrogels-hair-gel- and-disposable-nappies
14.8.2	Describe the pollution problems caused by non- biodegradable plastics	Learners can look for polymers around the home using recycling information. (I) Learners can discuss the benefits and disadvantages of polymer production and research the steps taken by chemists to reduce the environmental impact. Learners could prepare a presentation on impacts of polymers and benefits and constraints of recycling. (G)	Green Teacher (Education for Planet Earth: www.greenteacher.com/

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		 Issues to discuss include: economic barriers to the collection, sorting and processing of waste for recycling environmental effects of burning and landfill centuries scale longevity of examples such as disposable nappies and packaging learners can carry out a survey to collect, classify and weigh a day's discarded plastic waste. 	
14.8.2(S)	Deduce the structure of the polymer product from a given alkene and <i>vice versa</i>	Opportunity to reinforce the importance of writing clear structural formulae here. Use models to illustrate addition polymerisation and images to allow identification of repeat units and monomers. Use kinaesthetic activity to illustrate the mechanism of polymerisation. (W) or (G)	Video about making poly(ethene): www.bbc.co.uk/learningzone/clips/making- polythene-cracking-and- polymerisation/4427.html
14.8.2(S)	Explain the differences between condensation and addition polymerisation	When monomers react to form condensation polymers a small molecule is eliminated.	See 11(b) of this webpage for information: www.docbrown.info/page04/OilProducts11.ht m
14.8.2(S)	Describe the formation of nylon (a polyamide) and <i>Terylene</i> (a polyester) by condensation polymerisation, the structure of nylon being represented as:	 The formation of nylon can be demonstrated by the reaction of a diacid chloride with a diamine (Nylon Rope Trick). (W) This is a condensation reaction (addition/elimination reaction). Learners can gently melt nylon granules on a tin lid and draw out a 'fishing line' using a glass rod. (P) Emphasise the structure of both polymers (opposite). Learners should be instructed to show the amide/ester bond clearly and draw two repeat units for each polymer in examinations. Opportunity to make models of each polymer. 	Nylon rope trick demonstration, experimental procedure: www.rsc.org/learn- chemistry/resource/res00000755/making- nylon-the-nylon-rope-trick Video showing the nylon rope trick www.chemistry- videos.org.uk/chem%20clips/Nylon/nylon.html Video clip on nylon: www.rsc.org/Education/Teachers/Resources /Alchemy/

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	(Details of manufacture and mechanisms of these polymerisations are <i>not</i> required.)		
14.8.3	Name proteins and carbohydrates as constituents of food	Food packaging labels and 'healthy eating' claims on labels can be used as a source of discussion. (W) or (G)	Extensive information about sugar: www.sucrose.com/
14.8.3(S)	Describe proteins as possessing the same (amide) linkages as nylon but with different units	Stress the amide (peptide) CONH group present linking the monomers together. Opportunity to make models of a section of a protein. (G) or (P)	
14.8.3(S)	Describe the structure of proteins as:		
14.8.3(S)	Describe the hydrolysis of proteins to amino acids (Structures and names are <i>not</i> required.)	Opportunity to link to experimental use of locating agents in chromatography. (See Unit 1.) (W) Awareness of the use of this process as a diagnostic tool to identify when patients lack a particular amino acid. Stress the COO group present linking the monomers together.	Demonstration procedure and information: www.biotopics.co.uk/as/amino_acid_chromat ography.html
14.8.3(S)	Describe complex carbohydrates in terms of a large number of sugar units, considered as	Link this with Cambridge IGCSE Biology. Awareness of the importance of photosynthesis as a means of producing a renewable energy resource.	

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	HOOH, joined together by condensation polymerisation, e.g. -OO-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-	Opportunity to make models of a section of a carbohydrate either made from the same sugar or different sugar units.	
14.8.3(S)	Describe the hydrolysis of complex carbohydrates (e.g. starch) by acids or enzymes to give simple sugars	Awareness of the importance of this reaction to the ability of animals to absorb food for energy as soluble sugar from ingested insoluble complex carbohydrate.	Information on hydrolysis of starch at: www.bbc.co.uk/bitesize/standard/chemistry/p lasticsandothermaterials/carbohydrates/revis ion/5/
14.8.3(S)	Describe the fermentation of simple sugars to produce ethanol (and carbon dioxide) (Candidates will <i>not</i> be expected to give the molecular formulae of sugars.)	 Experiment/demonstration of fermentation possibly combined with distillation to produce alcohol (link to Unit 8 and Cambridge IGCSE Biology 0610). (W) or (P) Awareness of limitations on industrial conditions to increase the rate of this reaction due to living organism involved (yeast). Emphasise reaction stops when either the glucose is used up or the yeast is killed by the higher concentration of ethanol. Emphasise that enzymes are not killed – they are denatured in the yeast. Compare the pros and cons of the different methods to produce ethanol (fermentation of sugar solution and hydration of ethane – link to Unit 8). Link to important potential of ethanol as a renewable fuel. 	Fermentation experiment: <i>Chemistry for Cambridge IGCSE</i> , Norris and Stanbridge, p244 Fig. 20.4.1
14.8.3(S)	Describe, in outline, the usefulness of chromatography in separating and identifying the products of hydrolysis of carbohydrates and proteins	Experiments possible include the separation of a mixture of amino acids using ninhydrin as a locating agent (link to Unit 1). (W)	

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	Formative assessment	Learner progress could be assessed using questions from 0620 past examination papers and specimen papers available at: http://teachers.cie.org.uk	Unit 10: Past and Specimen Paper questions

Unit 11: Redox, electrochemistry and Group VII

Recommended prior knowledge

Learners should have good understanding of the Periodic Table, ionic bonding and writing equations.

Context

This unit builds on ideas from Unit 2 and Unit 6, and lays the foundations for Unit 12.

Outline

This unit begins with the introduction of redox reactions and their importance to the electrochemical industry and the world economy. These industrial processes allow important chemicals to be isolated, such as aluminium, and others to be prepared, such as hydrogen, chlorine and sodium hydroxide. This unit gives learners opportunities to investigate new types of electrochemical cells and the importance to world energy production. This unit is cross-referenced to assessment objectives AO1: 1–4, AO2: 1–7, AO3: 1–5 and Unit 2 and Unit 6.

(Note: **(S)** denotes material in the Supplement only.)

Teaching time

Based on a total time allocation of 130 contact hours for this Cambridge IGCSE course, it is recommended that this unit should take about 14 hours.

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
7.4	Define <i>oxidation</i> and <i>reduction</i> in terms of oxygen loss/gain (Oxidation state limited to its use to name ions, e.g. iron(II), iron(III), copper(II), manganate(VII)	 Stress that oxidation and reduction reactions always occur together in a redox reaction. Redox changes can often be observed as significant colour changes, e.g. rusting/corrosion of iron or iron + copper(II) sulfate ==> iron(II) sulfate + .copper. Link to ideas of the role of redox reactions in the production of energy from fuels and the extraction of metals. The reactions in car catalytic converters can also be studied here (link to Section 11.2, Unit 3). Experiments possible include the reaction of metals/non-metals with oxygen and the reaction of metal oxides with carbon. Some of these could be class experiments while others should be demonstrations. (P), (W) 	Definitions of oxidation and reduction: www.chemguide.co.uk/inorganic/redox/defini tions.html Oxidation reduction experiments: <i>Chemistry for Cambridge IGCSE</i> , Norris and Stanbridge, p114 Fig. 9.3.1, p117 Fig. 9.4.1
7.4(S)	Define <i>redox</i> in terms of electron transfer	Use the mnemonic 'OILRIG' (oxidation is loss of electrons, reduction is gain of electrons). Practice ionic equations and identify the substance oxidised and reduced in a given reaction. (I) or (P) Link this to the reactivity series and reactions of metals and metal salt solutions in Unit 6, the halogens and electrolysis later in this unit.	Definitions of oxidation and reduction: www.chemguide.co.uk/inorganic/redox/defini tions.html www.gcsescience.com/r7-oxidation- reduction-redox.htm Displacement reactions and redox: www.bbc.co.uk/schools/gcsebitesize/science /triple_ocr_gateway/chemistry_out_there/red ox_reactions/revision/4/
4.1(S)	Construct ionic equations with state symbols	Learners can use flash cards (formulae of ions and simple molecules) as an activity to construct ionic equations. (G) This also links to Unit 9. Experimental work on the formation of precipitates could be done here, if not covered in Unit 9. (P) Spectator ions can be introduced here.	The construction of ionic half-equations: www.chemguide.co.uk/inorganic/redox/equat ions.html lonic equations and precipitates: www.bbc.co.uk/schools/gcsebitesize/science /triple_ocr_gateway/how_much/ionic_equatio ns/revision/1/

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
7.4(S)	Identify redox reactions by changes in oxidation state and by the colour changes involved when using acidified potassium manganate(VII), and potassium iodide (Recall of equations involving KMnO4 is <i>not</i> required.)	 Demonstrations can include: reaction of ethanol and acidified KMnO₄ to yield ethanoic acid (link to Unit 8) (W) preparation of chlorine by reaction of conc. HC<i>l</i> and KMnO₄ solid and the reaction of potassium iodide solution with either chlorine or bromine (link to Group VII later in this unit). (W) Other reactions which could be demonstrated include zinc + copper(II) sulfate and iodide ions + hydrogen peroxide. (W) This links to Unit 6, syllabus section 9.4(S), knowing that 'transition elements have variable oxidation states'. 	lodine clock reaction: www.nuffieldfoundation.org/practical- chemistry/iodine-clock-reaction
7.4(S)	Define oxidising agent as a substance which oxidises another substance during a redox reaction. Define reducing agent as a substance which reduces another substance during a redox reaction.	Having just defined oxidation and reduction, this concept can be confusing for learners. There is good advice about this lower down the web page in the learning resource.	Advice about oxidising agent and reducing agent definitions: www.chemguide.co.uk/inorganic/redox/defini tions.html
7.4(S)	Identify oxidising agents and reducing agents from simple equations	This could be set as a problem-solving activity. (P)	Advice about oxidising agent and reducing agent definitions: www.chemguide.co.uk/inorganic/redox/defini tions.html
7.2(S)	Describe the use of silver salts in photography as a process of reduction of silver ions to silver; and photosynthesis as the reaction between carbon dioxide and water in the presence of chlorophyll and sunlight (energy) to produce glucose and	 Experiments on how light affects photosynthesis and darkening of slow photographic film in various light intensities. (W) or (G) A simple experiment can be to make silver chloride, bromide and iodide by precipitation (link to Unit 4) and watch them change colour under strong light. Photosynthesis is an endothermic process. 	How light affects photosynthesis and a photo-sensitive reaction: <i>Chemistry for Cambridge IGCSE</i> , Norris and Stanbridge, p106–107 Fig. 8.6.1 and 8.6.2 Information about silver salts in photography: www.kodak.com/US/en/corp/researchDevelo pment/whatWeDo/technology/chemistry/silve r.shtml

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	oxygen		
5	Define electrolysis as the breakdown of an ionic compound, molten or in aqueous solution, by the passage of electricity	This definition should be linked to the practical activities below.	
5	 Describe the electrode products and the observations made during the electrolysis of: molten lead(II) bromide concentrated hydrochloric acid concentrated aqueous sodium chloride dilute sulfuric acid between inert electrodes (platinum or carbon). 	These are demonstrations only and link with the production of halogens later in this unit. (W) Learners can safely carry out the electrolysis of small quantities of aqueous sodium chloride. Tests from Unit 4 can be used to identify all three products. (P) Link this to the industrial electrolysis of brine later in this unit. Learners can practise writing electron half-equations and link this to ideas of redox from earlier in this unit.	Excellent video of electrolysis of lead bromide: www.youtube.com/watch?v=4x2ZCSr23Z8 Practical details of electrolysis of lead bromide: www.nuffieldfoundation.org/practical- chemistry/electrolysing-molten-leadii- bromide <i>Chemistry for Cambridge IGCSE</i> , Norris and Stanbridge, p 70, Fig. 6.1.2 Notes on electrochemistry: www.docbrown.info/page01/ExIndChem/Extr aElectrochem.htm
5	State the general principle that metals or hydrogen are formed at the negative electrode (cathode), and that non-metals (other than hydrogen) are formed at the positive electrode (anode)	The demonstration of the electrolysis of molten lead bromide and the other experiments above can be used to illustrate this principle. Learners can electrolyse a range of aqueous solutions of salts and collect and test electrode products to confirm this. (P)	The procedure for a class practical: www.nuffieldfoundation.org/practical- chemistry/identifying-products-electrolysis
5	Predict the products of the electrolysis of a specified binary compound in the molten state	This should involve metal halides or metal oxides only. Emphasise that the product at the cathode is the corresponding metal and at the anode, a non-metal molecule (O_2 or Group VII molecule).	

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
5(S)	Construct ionic half- equations for reactions at the cathode	Plenty of practice during the rest of this unit will help learners to become familiar with this. (Link to Syllabus section 4.1(S) in Unit 9)	Information at: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa_pre_2011/ions/electrolysisrev5.sht ml
5(S)	 Describe the transfer of charge during electrolysis to include: the movement of electrons in the metallic conductor the removal or addition of electrons from the external circuit at the electrodes the movement of ions in the electrolyte. 	The video of the electrolysis of lead bromide from YouTube, suggested as a learning resource, has an excellent animation. Posters to show the flow of ions and electrons. (W)	Video of electrolysis of lead bromide: www.youtube.com/watch?v=4x2ZCSr23Z8
10.3	Know that aluminium is extracted from the ore bauxite by electrolysis		Video clips on aluminium extraction: www.rsc.org/Education/Teachers/Resources /Alchemy/ Information: www.bbc.co.uk/schools/gcsebitesize/science /add_gateway_pre_2011/periodictable/electr olysisrev1.shtml
10.3(S)	Describe in outline, the extraction of aluminium from bauxite including the role of cryolite and the reactions at the electrodes		Information about cryolite: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/electrolysis/electrolysisrev3.shtml
5(S)	Describe, in outline, the manufacture of • aluminium from pure aluminium oxide in	Link the production of aluminium back to the production of other metals from their ores (Unit 6). Link to methods of extraction linked to metal reactivity Unit 6.	Video clips on the aluminium extraction: www.rsc.org/Education/Teachers/Resources /Alchemy/

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	molten cryolite (Starting materials and essential conditions should be given but <i>not</i> technical details or diagrams.)	Awareness of the economic and environmental implications of the very high energy demand for electrolysis (link to need for recycling of aluminium and hydroelectric power).	See also the resources above.
5	Describe the reasons for the use of copper and (steel- cored) aluminium in cables, and why plastics and ceramics are used as insulators	The steel core provides additional strength. Aluminium is lightweight and a good conductor. Ceramics are found on pylons carrying high tension (voltage) cables.	
5(S)	Describe electrolysis in terms of the ions present and reactions at the electrodes in the examples given	This links with writing ionic equations (Unit 9).	www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/ions/electrolysisrev3.shtml
5(S)	Predict the products of electrolysis of a specified halide in dilute or concentrated aqueous solution	Demonstrations of the electrolysis of dilute and concentrated brine can show this. (W) The electrolysis of dilute solutions could also be a class practical. (P) Potential for group work as learners can produce a model to illustrate each process. (G) Emphasise the difference in products at the anode, oxygen (dilute solution) and the corresponding halogen (concentrated solution). In addition, stress that the concentration of the halide in solution increases in the electrolysis of the dilute solution, but in a concentrated halide solution it decreases.	Links to information and activities: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/ions/electrolysisrev4.shtml The procedure for a class practical given here could be adapted to fit the requirements of the syllabus: www.nuffieldfoundation.org/practical- chemistry/identifying-products-electrolysis A video about electrolysis and the section towards the end covers this: www.bbc.co.uk/schools/gcsebitesize/science/ add_aqa/electrolysis/electrolysisact.shtml
5(S)	Describe, in outline, the manufacture of • chlorine, hydrogen and	Awareness of the importance of the products of the processes in terms of their uses, e.g. hydrogen for making ammonia, chlorine for water treatment, NaOH for making soap.	Video clips on the electrolysis of NaC <i>l</i> : www.rsc.org/Education/Teachers/Resources /Alchemy/

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	sodium hydroxide from concentrated aqueous sodium chloride (Starting materials and essential conditions should be given but not technical details or diagrams.)		A video about electrolysis - the section at the end covers this: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/electrolysis/electrolysisact.shtml
9.3	Describe the halogens, chlorine, bromine and iodine in Group VII, as a collection of diatomic non-metals showing a trend in colour and density and state their reaction with other halide ions	Demonstration of preparation of chlorine (from concentrated hydrochloric acid and potassium manganate(VII)) and physical state and colour of bromine/iodine carried out in fume cupboard. (Link to Unit 2.) (W) Learners can predict the trend in reactivity and oxidising nature (giving reasons) and, as a result, predict the effect of adding anaqueous halogen to a halide salt. They could then carry out test-tube scale displacement reactions to see if their predictions are true. (P) Opportunity to practise writing half-equations. (I) Possible extension could be to demonstrate the reaction of iron with the halogens. (W)	Information and animation about the halogens: www.bbc.co.uk/schools/gcsebitesize/science /add_gateway_pre_2011/periodictable/group 7rev1.shtml Experimental procedures: <i>Chemistry for Cambridge IGCSE</i> , Norris and Stanbridge, p 151, Fig. 12.3.2 www.nuffieldfoundation.org/practical- chemistry/reactions-aqueous-solutions- halogens Information about chlorine: www.americanchemistry.com/chlorine/ Reaction of iron with halogens: www.practicalchemistry.org/experiments/hal ogen-reactions-with-iron%2C44%2CEX.html
9.3	Predict the properties of other elements in Group VII, given data where appropriate	This extends the list of halogens to include fluorine and astatine in theory only. In groups, learners could predict the reactivity, colour/physical state, melting/boiling point of fluorine and astatine. (G)	Information: www.bbc.co.uk/schools/gcsebitesize/science /add_ocr_gateway/periodic_table/group7rev 5.shtml
9.3(S)	Identify trends in Groups,	Information could include melting and boiling points, density and	

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
	given information about the elements concerned	chemical reactivity. Learners could do a group activity and present their findings to other members of the class. (G)	
5	Describe the electroplating of metals	Include examples from <u>any</u> group in the Periodic Table. Learners can electroplate zinc strips with copper. (P) An initial can be painted onto the strip with clear nail varnish, to give a silver initial on a copper background.	Chemistry for Cambridge IGCSE, Norris and Stanbridge, p78, Fig. 6.5.1 and 6.5.2 Electroplating: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/electrolysis/electrolysisrev2.shtml
5	Outline the uses of electroplating	To protect metals from corrosion and improve the appearance of metals, e.g. plating cutlery with silver and jewellery with gold or silver.	
5(S)	Relate the products of electrolysis to the electrolyte and electrodes used, exemplified by the specific examples in the Core together with aqueous copper(II) sulfate using carbon electrodes and using copper electrodes (as used in the refining of copper)	Awareness of the need for very pure copper for electrical wiring (pupils can cut open samples of wire to find copper) due to the interruption of current flow by impurities, as compared to copper needed for water pipes (link to Unit 6).	Electrolysis activity – a useful interactive video: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa/electrolysis/electrolysisact.shtml Video clip on copper refining: www.rsc.org/Education/Teachers/Resources /Alchemy/
5(S)	Describe the production of electrical energy from simple cells, i.e. two electrodes in an electrolyte (This should be linked with the reactivity series in section 10.2 and redox in section 7.4.)	Learners can make simple cells using a potato or any citrus fruit with metal electrodes. (P) or (G) Opportunity for group work – learners could investigate the best substance for making a simple cell. (G)	Potato cell: www.miniscience.com/projects/PotatoElectri city/

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
6.2(S)	Describe the use of hydrogen as a fuel reacting with oxygen to generate electricity in a fuel cell (Details of the construction and operation of a fuel cell are <i>not</i> required.)	 Possible issues to discuss include: toxicity of heavy metals used in batteries and subsequent hazards of their disposal (W) usefulness of re-chargeable batteries including their use for storage of energy from alternative energy sources such as domestic solar panels and wind-powered generators (and in cars). (W) 	Background information: www.greenspec.co.uk/building-design/fuel- cells/
	Formative assessment	Learner progress could be assessed using questions from 0620 past examination papers and specimen papers available at: http://teachers.cie.org.uk	Unit 11: Past and Specimen Paper questions

Scheme of work – Cambridge IGCSE[®] Chemistry (0620)

Unit 12: Equilibria

Recommended prior knowledge

Learners should have good breadth of chemical knowledge, in particular concerning reaction rates and calculations involving moles.

Context

This unit brings together ideas from several earlier units.

Outline

This unit begins by introducing the concept of equilibrium and its importance to industry (the Haber Process and the Contact Process) and the world economy. These industrial processes enable vital chemicals such as ammonia and sulfuric acid to be produced, which are needed for the production of fertilisers and other important industrial chemicals. This unit sets the scene for a consideration of how socioeconomic and environmental factors are important in choosing a site for an industrial process. There are numerous opportunities to link to units already covered. This unit is cross-referenced to assessment objectives AO1:1–4, AO2: 1–7, AO3: 1–5 and Unit 5.

(Note: (S) denotes material in the Supplement only.)

Teaching time

Based on a total time allocation of 130 contact hours for this Cambridge IGCSE course, it is recommended that this unit should take about 10 hours

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
7.3	Understand that some chemical reactions can be reversed by changing the reaction conditions (Limited to the effects of heat and water on hydrated and anhydrous copper(II) sulfate and cobalt(II) chloride.) (Concept of equilibrium is <i>not</i> required.)	Some reactions can be classified as reversible and learners should be introduced to the reversible sign ≓. Experimental work can involve learners heating hydrated copper(II) sulfate and adding water to anhydrous copper(II) sulfate as an illustration. (P) Extension–learners to determine the amount of water removed on heating and calculate the formula of hydrated copper(II) sulfate (link to Unit 6).	Practical procedure for heating hydrated copper(II) sulfate: www.nuffieldfoundation.org/practical- chemistry/reversible-reaction-involving- hydrated-copperii-sulfate-and%C2%A0its- anhydrous-form Practical procedure for determining the amount of water in copper(II) sulfate: www.chalkbored.com/lessons/chemistry- 11/hydrate-lab.pdf
7.3(S)	Demonstrate knowledge and understanding of the concept of equilibrium	 This could be introduced using the escalator analogy and by demonstrating the effect of acid and alkali on: methyl orange indicator sodium chromate/dichromate equilibrium iodide/iodine equilibrium. (W) 	The escalator analogy and an Interactive tool to introduce equilibrium: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa_pre_2011/chemreac/reversiblerea crev1.shtml Practical procedure for sodium chromate/dichromate equilibrium: www.nuffieldfoundation.org/practical- chemistry/equilibrium-involving-chromatevi- and-dichromatevi-ions
		A class practical to show an equilibrium with copper(II) ions may be carried out. (P)	Equilibrium with copper(II) ions: www.nuffieldfoundation.org/practical- chemistry/equilibrium-involving-copperii-ions
7.3(S)	Predict the effect of changing the conditions (concentration, temperature and pressure) on other reversible	Learners in groups can analyse yield data comparing rate and yield with varying conditions and extend this to predicting reaction conditions used for equilibrium reactions to produce the most efficient reaction. (G)	
	reactions	The effect of concentration can be demonstrated using the chlorine/iodine monochloride equilibrium. Care and use of a fume cupboard are essential. (W) Illustrate how changing the temperature and pressure and the	A practical procedure for the iodine monochloride iodine trichloride equilibrium: www.nuffieldfoundation.org/practical- chemistry/le-chatelier%E2%80%99s- principle-effect-concentration-and-

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		 introduction of a catalyst affects the yield and rate (link with Unit 4) in the Haber and Contact processes (below). Important issues to consider include: Raising the temperature, increases the rate and the energy demand and hence economic cost. This lowers the yield for exothermic but increases the yield for endothermic reactions; Increasing the pressure increases the rate and the energy demand and hence economic/equipment costs. The yield changes depend on the number of moles of gas reactants to products; Introduction of a catalyst leads to a lower energy demand (lower temperature for an equivalent rate) and hence economic cost and saving fossil fuel resources; Considerations of increased yield against increased cost are balanced to give 'optimum conditions'. It is important to distinguish the effect of changing a condition on the reaction rate and equilibrium. Summarise in a table to avoid confusion. 	temperature-equilibrium and <i>Chemistry for Cambridge IGCSE</i> , Norris and Stanbridge, p112 Effect of temperature on an equilibrium: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa_pre_2011/chemreac/reversiblerea crev2.shtml An interactive animation of the effect of temperature in the Haber process: www.bbc.co.uk/schools/gcsebitesize/science /add_aqa_pre_2011/chemreac/reversiblerea crev3.shtml This is followed on the next two pages by the effect of pressure on the Haber process.
11.3(S)	Describe and explain the essential conditions for the manufacture of ammonia by the Haber process including the sources of the hydrogen and nitrogen, i.e. hydrocarbons or steam and air	Nitrogen from the air (link with Unit 1). Hydrogen from natural gas (link with Unit 4). Opportunity for group work where learners can produce a series of flash cards to make a flowchart of this process or question loop activity to sequence the process. (G) The importance of recycling unreacted nitrogen and hydrogen needs to be mentioned. The effect of the variation of values of temperature and pressure can be studied by advanced learners. Awareness of the economic and environmental advantages of placement of a manufacturing site can be investigated by learners. Opportunities for reacting masses and volume calculations (link	www.chemguide.co.uk/physical/equilibria/ha ber.html Video clip of the process: www.bbc.co.uk/learningzone/clips/formation- of-ammonia-in-the-haber-process/4432.html Video clip on ammonia: www.rsc.org/Education/Teachers/Resources /Alchemy/

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		with Unit 6 – Amount of Substance).	
11.3	Describe the need for nitrogen-, phosphorus- and potassium-containing fertilisers	This could be a research activity. (G) Links to biology and practical involving plant growth under controlled conditions.	
12	Name some sources of sulfur	This could be set as a research activity with the next syllabus references below. (G) Sulfur is found uncombined or combined with metals as zinc blende (ZnS) or galena (PbS).	
12	Name the use of sulfur in the manufacture of sulfuric acid	90% of the extracted sulfur is converted to sulfuric acid.	
12	State the uses of sulfur dioxide as a bleach in the manufacture of wood pulp for paper and as a food preservative (by killing bacteria)	Emphasise the uses of sulfur dioxide as a bleaching agent (paper manufacture) and in killing bacteria (to preserve food). Look at food labels to see if sulfites (which release sulfur dioxide in acidic conditions) are present. (I)	
12(S)	Describe the manufacture of sulfuric acid by the Contact process, including essential conditions and reactions	Mention specific temperature, pressure and catalyst information. Learners can practise using flow diagrams to represent the process. (P) or (I) Economic issues relating to temperature and catalyst use could be discussed here, as with the Haber Process. Opportunity for group work as in the Haber process above. (G) As with the Haber process, more advanced learners could study the effect of variation of temperature and pressure on the yield of sulfuric acid. Stress that the industrial process does not use high pressure even though it would be theoretically beneficial – it is not cost effective	www.chemguide.co.uk/physical/equilibria/co ntact.html Video clip on the Contact Process: www.rsc.org/Education/Teachers/Resources /Alchemy/ There are also other teaching resources and information at this site. Manufacture of sulfuric acid: www.greener- industry.org.uk/pages/sulphuric_acid/9Sulph uricAcidManu.htm www.bbc.co.uk/schools/gcsebitesize/science

Syllabus ref	Learning objectives	Suggested teaching activities	Learning resources
		for the mediocre increase in yield.	/triple_ocr_gateway/how_much/equilibria/revi sion/4/
		Opportunities for reacting masses and volume calculations (link with Unit 6). (I) or (P)	
12(S)	Describe the properties and uses of dilute and concentrated sulfuric acid	The properties of dilute sulfuric acid are those of a typical acid and this links to acids, bases and salts (Unit 3). Learners could prepare ammonium sulfate. (P)	Preparing ammonium sulfate fertiliser: <i>Chemistry for Cambridge IGCSE,</i> Norris and Stanbridge, p197 Fig. 16.1.2
		Demonstrate concentrated sulfuric acid as a dehydrating agent with hydrated copper(II) sulfate and sucrose provided. (W)	Sulfuric acid as a dehydrating agent: www.nuffieldfoundation.org/practical- chemistry/sulfuric-acid-dehydrating-agent
		The uses of both dilute and concentrated sulfuric acid would make a good research activity. (G)	Uses of sulfuric acid: www.docbrown.info/page01/ExIndChem/ExI ndChemb.htm
	Formative assessment	Learner progress could be assessed using questions from 0620 past examination papers and specimen papers available at: http://teachers.cie.org.uk	Unit 12: Past and Specimen Paper questions

 $\circledast\ensuremath{\operatorname{\mathsf{IGCSE}}}$ is the registered trademark of Cambridge International Examinations.

© Cambridge International Examinations 2014